In the present work, a new family of pyrene (Py)-substituted phthalocyanines (Pcs), i.e., ZnPc-Py and H(2)Pc-Py, were designed, synthesized, and probed in light of their spectroscopic properties as well as their interactions with single-wall carbon nanotubes (SWNTs). The pyrene units provide the means for non-covalent functionalization of SWNTs via π-π interactions. Such a versatile approach ensures that the electronic properties of SWNTs are not impacted by the chemical modification of the carbon skeleton. The characterization of ZnPc-Py/SWNT and H(2)Pc-Py/SWNT has been performed in suspension and in thin films by means of different spectroscopic and photoelectrochemical techniques. Transient absorption experiments reveal photoinduced electron transfer between the photoactive components. ZnPc-Py/SWNT and H(2)Pc-Py/SWNT have been integrated into photoactive electrodes, revealing stable and reproducible photocurrents with monochromatic internal photoconversion efficiency values for H(2)Pc-Py/SWNT as large as 15 and 23% without and with an applied bias of +0.1 V.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja107131rDOI Listing

Publication Analysis

Top Keywords

znpc-py/swnt h2pc-py/swnt
8
phthalocyanine-pyrene conjugates
4
conjugates powerful
4
powerful approach
4
approach carbon
4
carbon nanotube
4
nanotube solar
4
solar cells
4
cells work
4
work family
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!