Impact of solvent quality on nanoparticle dispersion in semidilute and concentrated polymer solutions.

Langmuir

Department of Chemical Engineering, University of Virginia, 102 Engineers Way, Charlottesville, Virginia 22904, United States.

Published: November 2010

We investigated how solvent quality affects the stability of polymer-grafted nanoparticles in semidilute and concentrated polymer solutions, which extends our previous studies on these types of dispersions in good solvents [Langmuir 2008, 24, 5260-5269]. As discussed in the current article, dynamic light scattering (DLS) was used to quantify the diffusion of polydimethylsiloxane-grafted silica nanoparticles, or PDMS-g-silica, in bromocyclohexane as well as in PDMS/bromocyclohexane solutions. We established that bromocyclohexane is a theta solvent for PDMS by varying the temperature of the solutions with PDMS-g-silica nanoparticles and detecting their aggregation at a theta temperature of T(Θ) = 19.6 °C. Using this temperature as a benchmark for the transition between good and bad solvent conditions, further stability tests were carried out in semidilute and concentrated polymer solutions of PDMS in bromocyclohexane at T = 10-60 °C. Irrespective of temperature, i.e., solvent quality, we found that the nanoparticles dispersed uniformly when molecular weight of the graft polymer was greater than that of the free polymer. However, when the free polymer molecular weight was greater than that of the graft polymer, the nanoparticles aggregated. Visual studies were also used to confirm the correspondence between nanoparticle stability and graft and free polymer molecular weights in a wide range of marginally poor solvents with PDMS. Further, the correspondence between nanoparticle stability and instability with graft and free polymer molecular weight and solvent quality was also supported with self-consistent mean-field calculations. Thus, by relating experiment and theory, our results indicate that nanoparticle stability in semidilute and concentrated polymer solutions is governed by interactions between the graft and free polymers under conditions of variable solvency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la102401wDOI Listing

Publication Analysis

Top Keywords

solvent quality
16
semidilute concentrated
16
concentrated polymer
16
polymer solutions
16
free polymer
16
molecular weight
12
polymer molecular
12
nanoparticle stability
12
graft free
12
polymer
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!