The metal-organic framework (∞)[(La(0.9)Eu(0.1))(2)(DPA)(3)(H(2)O)(3)] was tested for extraction of pyrimicarb, procymidone, malathion, methyl parathion and α- and β-endosulfan from lettuce, with analysis using GC/MS in SIM mode. Experiments were carried out in triplicate at two fortification levels (0.1 and 0.5 mg/kg), and resulted in recoveries in the range of 78-107%, with RSD values between 1.6 and 8.0% for (∞)[(La(0.9)Eu(0.1))(2)(DPA)(3)(H(2)O)(3)] sorbent. Detection and quantification limits ranged from 0.02 to 0.05 mg/kg and from 0.05 to 0.10 mg/kg, respectively, for the different pesticides studied. The method developed was linear over the range tested (0.05-10.0 μg/mL), with correlation coefficients ranging from 0.9990 to 0.9997. Comparison between (∞)[(La(0.9)Eu(0.1))(2)(DPA)(3)(H(2)O)(3)] and conventional sorbent (silica gel) showed better performance of the (∞)[(La(0.9)Eu(0.1))(2)(DPA)(3)(H(2)O)(3)] polymeric sorbent for all pesticides tested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.201000553 | DOI Listing |
Chem Asian J
January 2025
Indian Institute of Technology Ropar, Chemistry, Nangal Road, 140001, Rupnagar, INDIA.
Carbon dioxide (CO2) capture and its subsequent catalytic fixation into usable compounds represent a potential approach for addressing the energy problem and the implications of global warming. Hence, it is necessary to develop effective catalytic systems required for the transformation of CO2 into valuable chemicals/fuels. Herein, we rationally designed a hydroxyl-functionalized porous organic framework (OH-POF) consisting of both acidic (OH) as well as basic N sites for the transformation of CO2 using epoxides for the production of cyclic carbonates (CCs), a useful commodity chemical under environmental-friendly, metal/solvent/co-catalyst-free conditions.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
Organophosphorus pesticides (OPs) pose significant environmental and health risks, and their detoxification through catalytic hydrolysis using zirconium-based metal-organic frameworks (Zr-MOFs) has attracted considerable interest due to the strong Lewis acid metal ions. Albeit important, the defects of the materials for OP hydrolysis (e.g.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Memorial University of Newfoundland, Chemistry, Department of Chemistry, 230 Elizabeth avenue, A1B 3X7, St. John's, CANADA.
Developing the mechanism for MOF formation is crucial for the rapid development of new materials. This work demonstrates that Deuterium-NMR spectroscopy is the optimal inter-laboratory methodology for understanding the in-situ kinetics of metal-organic framework (MOF) formation. This method is facile, affordable, and allows for the isolation and monitoring of individual reagents by using one deuterated component while the remaining components are protonated.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India.
Atomically precise metal nanoclusters (NCs) and metal-organic frameworks (MOFs) possess distinct properties that can present challenges in certain applications. However, integrating these materials to create new composite functional materials has gained significant interest due to their unique characteristics through a range of applications, particularly in catalysis. Considering MOFs as hosts and NCs as guests, several synergistic effects have been observed in composites, particularly in environmental catalytic reactions.
View Article and Find Full Text PDFACS Nano
January 2025
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!