Biological reactive intermediates can be created via metabolism of xenobiotics during the process of chemical elimination. They can also be formed as by-products of cellular metabolism, which produces reactive oxygen and nitrogen species. These reactive intermediates tend to be electrophilic in nature, which enables them to interact with tissue macromolecules, disrupting cellular signaling processes and often producing acute and chronic toxicities. Quinones are a well-known class of electrophilic species. Many natural products contain quinones as active constituents, and the quinone moiety exists in a number of chemotherapeutic agents. Quinones are also frequently formed as electrophilic metabolites from a variety of xeno- and endobiotics. Hydroquinone (HQ) is present in the environment from various sources, and it is also a known metabolite of benzene. HQ is converted in the body to 1,4-benzoquinone, which subsequently gives rise to hematotoxic and nephrotoxic quinone-thioether metabolites. The toxicity of these metabolites is dependent upon their ability to arylate proteins and to produce oxidative stress. Protein tertiary structure and protein amino acid sequence combine to determine which proteins are targets of these electrophilic quinone-thioether metabolites. We have used cytochrome c and model peptides to view adduction profiles of quinone-thioether metabolites, and have determined by MALDI-TOF analysis that these electrophiles target specific residues within these model systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096023 | PMC |
http://dx.doi.org/10.1007/978-1-60761-849-2_18 | DOI Listing |
Arch Toxicol
May 2019
Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
Humans are exposed to hydroquinone (HQ) via diet, smoking, occupation, and even via inhalation of polluted air. Given its preferential distribution in kidney and liver, the impact of biotransformation on the nephrotoxicity and hepatotoxicity of HQ was evaluated. Indeed, HQ and its metabolites, benzoquinone, and quinone-thioethers (50, 100, 200, and 400 μM) all induced ROS-dependent cell death in both HK-2, a human kidney proximal epithelial cell line, and THLE-2, a human liver epithelial cell line, in a concentration-dependent manner.
View Article and Find Full Text PDFToxicol Sci
July 2011
Department of Pharmacology and Toxicology, Southwest Environmental Health Sciences Center, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, USA.
Electrophile-mediated post-translational modifications (PTMs) are known to cause tissue toxicities and disease progression. These effects are mediated via site-specific modifications and structural disruptions associated with such modifications. 1,4-Benzoquinone (BQ) and its quinone-thioether metabolites are electrophiles that elicit their toxicity via protein arylation and the generation of reactive oxygen species.
View Article and Find Full Text PDFMethods Mol Biol
February 2011
Department of Pharmacology and Toxicology, Southwest Environmental Health Sciences Center, Center for Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
Biologically reactive intermediates are formed following metabolism of xenobiotics, and during normal oxidative metabolism. These reactive species are electrophilic in nature and are capable of forming stable adducts with target proteins. These covalent protein modifications can initiate processes that lead to acute tissue injury or chronic disease.
View Article and Find Full Text PDFMethods Mol Biol
February 2011
Department of Pharmacology and Toxicology, Southwest Environmental Health Sciences Center, Center for Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
Biological reactive intermediates can be created via metabolism of xenobiotics during the process of chemical elimination. They can also be formed as by-products of cellular metabolism, which produces reactive oxygen and nitrogen species. These reactive intermediates tend to be electrophilic in nature, which enables them to interact with tissue macromolecules, disrupting cellular signaling processes and often producing acute and chronic toxicities.
View Article and Find Full Text PDFChem Res Toxicol
April 2007
UMR 8638 CNRS, Université Paris Descartes, Synthèse et Structure de Molécules d'Intérêt Pharmacologique, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l'Observatoire, 75270 Paris cedex 06, France.
Several catechol-thioether metabolites of MDMA (ecstasy), three monoadducts, 5-(glutathion-S-yl)-N-methyl-alpha-methyldopamine (1), 5-(N-acetylcystein-S-yl)-N-methyl-alpha-methyldopamine (2), and 5-(cystein-S-yl)-N-methyl-alpha-methyldopamine (3), and two bi-adducts, 2,5-bis(glutathion-S-yl)-N-methyl-alpha-methyldopamine (4) and 2,5-bis(N-acetylcystein-S-yl)-N-methyl-alpha-methyldopamine (5), have been synthesized through an environmentally friendly one-pot electrochemical procedure. Their cytotoxicity profiles were further characterized using simple Escherichia coli plate assays and compared with those of N-methyl-alpha-methyldopamine (HHMA), dopamine (DA), and its corresponding catechol-thioether conjugates (monoadducts 6-8 and bi-adducts 9 and 10). Toxicity mediated by reactive oxygen species (ROS-TOX) was detected in the OxyR- assay, using cells sensitive to oxidative stress due to a deficiency in the OxyR protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!