AI Article Synopsis

  • The study compares hydride transfer processes in both the wild-type dihydrofolate reductase and a mutant version (I14A).
  • It suggests that the size of the side chain at position 14 impacts how effectively hydrogen tunneling occurs during the enzymatic reaction.
  • This modulation of H-tunneling could influence the enzyme's overall efficiency and behavior.

Article Abstract

Comparison of the nature of hydride transfer in wild-type and active site mutant (I14A) of dihydrofolate reductase suggests that the size of this side chain at position 14 modulates H-tunneling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346287PMC
http://dx.doi.org/10.1039/c0cc02988bDOI Listing

Publication Analysis

Top Keywords

active-site isoleucine
4
isoleucine alanine
4
alanine mutation
4
mutation dhfr
4
dhfr catalyzed
4
catalyzed hydride-transfer
4
hydride-transfer comparison
4
comparison nature
4
nature hydride
4
hydride transfer
4

Similar Publications

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

Dyslipidemia, an imbalance in blood lipid levels, is a frequent complication of type 2 diabetes mellitus (DM2) and heightens the risk of cardiovascular diseases (CVDs). Statins, which inhibit 3-hydroxy-3-methylglutaryl-CoA reductase, are potent competitive inhibitors that reduce plasma cholesterol levels. However, individual responses to statins can vary markedly, possibly due to genetic variations in the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) gene.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (M) autocatalytically releases itself out of the viral polyprotein to form a fully active mature dimer in a manner that is not fully understood. Here, we introduce several tools to help elucidate differences between cis (intramolecular) and trans (intermolecular) proteolytic processing and to evaluate inhibition of precursor M. We found that many mutations at the P1 position of the N-terminal autoprocessing site do not block cis autoprocessing but do inhibit trans processing.

View Article and Find Full Text PDF

Advances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we show that 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) identifies a functional role for the Arg-142 side chain and test this hypothesis experimentally by characterizing the R142I variant in which Arg-142 is replaced by isoleucine. Support for Arg-142 playing a role in the intramolecular translocation of ammonia between the active site of the enzyme is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS, and MD simulations provide a possible molecular mechanism for these findings.

View Article and Find Full Text PDF

Glioblastoma, a fatal brain cancer with limited treatments and poor prognosis, could benefit from targeting the L-type amino acid transporter I (LAT1). LAT1 is essential for cancer cells to acquire necessary amino acids. Tetrahydrocurcumin (THC), a key curcumin derivative, shows potential for glioblastoma treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!