The transcriptional co-activators YAP and TAZ are downstream targets inhibited by the Hippo tumor suppressor pathway. YAP and TAZ both possess WW domains, which are important protein-protein interaction modules that mediate interaction with proline-rich motifs, most commonly PPXY. The WW domains of YAP have complex regulatory roles as exemplified by recent reports showing that they can positively or negatively influence YAP activity in a cell and context-specific manner. In this study, we show that the WW domain of TAZ is important for it to transform both MCF10A and NIH3T3 cells and to activate transcription of ITGB2 but not CTGF, as introducing point mutations into the WW domain of TAZ (WWm) abolished its transforming and transcription-promoting ability. Using a proteomic approach, we discovered potential regulatory proteins that interact with TAZ WW domain and identified Wbp2. The interaction of Wbp2 with TAZ is dependent on the WW domain of TAZ and the PPXY-containing C-terminal region of Wbp2. Knockdown of endogenous Wbp2 suppresses, whereas overexpression of Wbp2 enhances, TAZ-driven transformation. Forced interaction of WWm with Wbp2 by direct C-terminal fusion of full-length Wbp2 or its TAZ-interacting C-terminal domain restored the transforming and transcription-promoting ability of TAZ. These results suggest that the WW domain-mediated interaction with Wbp2 promotes the transforming ability of TAZ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033532 | PMC |
http://dx.doi.org/10.1038/onc.2010.438 | DOI Listing |
Tissue Cell
December 2024
School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China. Electronic address:
The Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) play complex roles in liver health, influencing processes such as fibrosis, cancer development, and regeneration. WW domain binding protein-2 (WBP2) primarily enhances the co-translational activity of YAP/TAZ, which is crucial for the progression of liver diseases. Despite existing knowledge, the specific functions of WBP2 and its interactions with YAP remain inadequately understood.
View Article and Find Full Text PDFAutophagy
September 2024
Department of Biology, University of Fribourg, Fribourg, Switzerland.
Macroautophagy/autophagy is a constitutively active catabolic lysosomal degradation pathway, often found dysregulated in human diseases. It is often considered to act in a cytoprotective manner and is commonly upregulated in cells undergoing stress. Its initiation is regulated at the protein level and does not require protein synthesis.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2024
Jining Medical University, ShanDong, China.
G protein pathway suppressor 1 (GPS1) is involved in the development of many diseases including tumors, but its specific regulatory mechanism in breast cancer is not clear. The goal of the present study was to explore the biological effects and underlying mechanism of GPS1 in breast cancer. Public databases were used to analyze GPS1 expression and the relationship with clinicopathological characteristics and prognosis of breast cancer patients, combined with in vitro experiments to analyze the mechanism of action and immune relevance of GPS1 in breast cancer.
View Article and Find Full Text PDFRedox Biol
September 2023
Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China; Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China. Electronic address:
Cisplatin is one of the major causes of acute kidney injury (AKI) in clinical practice, and ferroptosis is an essential form of cell death in cisplatin-induced AKI (CP-AKI). WW domain binding protein-2 (WBP2), a molecular chaperon, is involved in the progression of various malignancies, but its role in renal injuries has not been investigated. Our present study employed bioinformatics analysis to identify WBP2 as a potential modulator of AKI and ferroptosis.
View Article and Find Full Text PDFCells
November 2021
Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore.
Cancer is a global health problem. The delineation of molecular mechanisms pertinent to cancer initiation and development has spurred cancer therapy in the form of precision medicine. The Hippo signalling pathway is a tumour suppressor pathway implicated in a multitude of cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!