Carbon nanofibers (CNFs) are used as components of planar photonic crystals. Square and rectangular lattices and random patterns of vertically aligned CNFs were fabricated and their properties studied using ellipsometry. We show that detailed information such as symmetry directions and the band structure of these novel materials can be extracted from considerations of the polarization state in the specular beam. The refractive index of the individual nanofibers was found to be n(CNF) = 4.1.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/21/46/465203DOI Listing

Publication Analysis

Top Keywords

photonic crystals
8
optical properties
4
properties carbon
4
carbon nanofiber
4
nanofiber photonic
4
crystals carbon
4
carbon nanofibers
4
nanofibers cnfs
4
cnfs components
4
components planar
4

Similar Publications

Van der Waals (vdWs) materials are promising candidates for hetero-integration with silicon photonics toward miniaturization and integration. VdWs materials like molybdenum telluride and black phosphorus, despite being prominent, exhibit air sensitivity, and their room temperature emissions can be significantly broadened by tens of meV. Here, a self-encapsulation strategy is developed to scalably synthesize robust 2D vdWs ErOCl with sub-meV narrow emissions at the telecom C-band.

View Article and Find Full Text PDF

Atomic defects in solids offer a versatile basis to study and realize quantum phenomena and information science in various integrated systems. All-electrical pumping of single defects to create quantum light emission has been realized in several platforms including color centers in diamond and silicon carbide, which could lead to the circuit network of electrically triggered single-photon sources. However, a wide conduction channel which reduces the carrier injection per defect site has been a major obstacle.

View Article and Find Full Text PDF

This paper presents a novel investigation of a magnetic sensor that employs Fano/Tamm resonance within the photonic band gap of a one-dimensional crystal structure. The design incorporates a thin layer of gold (Au) alongside a periodic arrangement of Tantalum pentoxide ([Formula: see text]) and Cesium iodide ([Formula: see text]) in the configuration [Formula: see text]. We utilized the transfer matrix method in conjunction with the Drude model to analyze the formation of Fano/Tamm states and the permittivity of the metallic layer, respectively.

View Article and Find Full Text PDF

Photonic crystal-based aptasensors for viral proteins detection offer the advantage of producing visible readouts. However, they usually suffer from limited sensitivity and high non-specific background noise. A significant contributing factor to these issues is the use of fixed-conformation aptamers in these sensors.

View Article and Find Full Text PDF

Simulations of the Potential for Diffraction Enhanced Imaging at 8 keV using Polycapillary Optics.

Biomed Phys Eng Express

January 2025

Physics Department, University at Albany, 1400 Washington Ave, Albany, New York, 12222-0100, UNITED STATES.

Conventional x-ray radiography relies on attenuation differences in the object, which often results in poor contrast in soft tissues. X-ray phase imaging has the potential to produce higher contrast but can be difficult to utilize. Instead of grating-based techniques, analyzer-based imaging, also known as diffraction enhanced imaging (DEI), uses a monochromator crystal with an analyzer crystal after the object.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!