Identification of mechanisms promoting prezygotic reproductive isolation and their prevalence are key goals in evolutionary biology because of their potential role in speciation. In marine broadcast-spawning species, molecular interactions between gamete surface proteins are more important than mating behavior for determining reproductive compatibility. Evidence for differential fertilization capacity has been reported from experiments utilizing competing sperm from two males sampled within populations and between species, but to our knowledge conspecific populations that might have diverged in allopatry have never been tested on the basis of sperm competition. In the present study, the gametic compatibility and embryo survivorship from matings between two allopatric populations of Crassostrea virginica, the eastern oyster, on either side of a genetic step cline were investigated. Fertilization success, embryo survival, and paternity data all indicated an absence of strong reproductive barriers between the two oyster populations, implicating other mechanisms for maintenance of the cline step. Sperm from northern male oysters showed a tendency to produce more larvae than expected when competing with sperm from southern male oysters. Although the northern male advantage was not strong, the trend implies that long-distance dispersal across the step cline might more successfully result in north-to-south gene flow than the reverse, providing a mechanistic hypothesis explaining the asymmetric cline shape.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/BBLv219n2p142 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!