A common pattern of brain MRI imaging in mitochondrial diseases with complex I deficiency.

J Med Genet

Université Paris Descartes, AP-HP Hôpital Necker-Enfants Malades et Inserm U781 et U797, Départements de Génétique, de Radiologie pédiatrique et des Maladies du développement, Paris, France.

Published: January 2011

Objective: To identify a consistent pattern of brain MRI imaging in primary complex I deficiency. Complex I deficiency, a major cause of respiratory chain dysfunction, accounts for various clinical presentations, including Leigh syndrome. Human complex I comprises seven core subunits encoded by mitochondrial DNA (mtDNA) and 38 core subunits encoded by nuclear DNA (nDNA). Moreover, its assembly requires six known and many unknown assembly factors. To date, no correlation between genotypes and brain MRI phenotypes has been found in complex I deficiencies.

Design And Subjects: The brain MRIs of 30 patients carrying known mutation(s) in genes involved in complex I were retrospectively collected and compared with the brain MRIs of 11 patients carrying known mutations in genes involved in the pyruvate dehydrogenase (PDH) complex as well as 10 patients with MT-TL1 mutations.

Results: All complex I deficient patients showed bilateral brainstem lesions (30/30) and 77% (23/30) showed anomalies of the putamen. Supratentorial stroke-like lesions were only observed in complex I deficient patients carrying mtDNA mutations (8/19) and necrotising leucoencephalopathy in patients with nDNA mutations (4/5). Conversely, the isolated stroke-like images observed in patients with MT-TL1 mutations, or the corpus callosum malformations observed in PDH deficient patients, were never observed in complex I deficient patients.

Conclusion: A common pattern of brain MRI imaging was identified with abnormal signal intensities in brainstem and subtentorial nuclei with lactate peak as a clue of complex I deficiency. Combining clinico-biochemical data with brain imaging may therefore help orient genetic studies in complex I deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmg.2010.079624DOI Listing

Publication Analysis

Top Keywords

complex deficiency
20
brain mri
16
pattern brain
12
mri imaging
12
complex
12
patients carrying
12
complex deficient
12
deficient patients
12
common pattern
8
core subunits
8

Similar Publications

Complex I deficiency remains the most frequent cause of Leigh syndrome spectrum.

Brain Commun

December 2024

Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.

This scientific commentary refers to 'Biallelic variants lead to a neurodevelopmental phenotype with gradual neurological impairment', by Kaiyrzhanov . (https://doi.org/10.

View Article and Find Full Text PDF

A worldwide issue, vitamin D deficiency affects pregnant mothers and babies everywhere, including Indonesia. It involves the adaptive immune system by controlling the production of pro-and anti-inflammatory cytokines and the balance between humoral (Th2) and cell-mediated (Th1) immunity. The aim of this study was to investigate the relationship between vitamin D and the cytokines IL-6 and IL-10 in infants.

View Article and Find Full Text PDF

Undesirable loss of open-circuit voltage and current of metal halide perovskite (MHP) solar cells are closely associated with defects, so theoretical calculations have been often performed to scrutinize the nature of defects in bulk of MHPs. Yet, exploring the properties of defects at surfaces of MHPs is severely lacking given the complexity of the surface defects with high concentrations. In this study, IPb (PbI) antisite defects, namely one Pb (I) site being occupied by one I (Pb) atom at the surfaces of the FAPbI3 (FA = CH(NH2)2) material, are found to create electron (hole) traps when the surfaces with IPb (PbI) antisite defects are negatively (positively) charged.

View Article and Find Full Text PDF

Facile Formulation of a Resveratrol-Mediated Multibond Network Hydrogel with Efficient Sustainable Antibacterial, Reactive Oxygen Species Scavenging, Pro-Angiogenesis, and Immunomodulation Activities for Accelerating Infected Wound Healing.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China.

The management of chronic infected wounds remains a significant clinical challenge, largely due to the deficiency of optimal wound dressings with adequate mechanical strength, appropriate adhesiveness, and efficient sustainable antibacterial, reactive oxygen species (ROS) scavenging, pro-angiogenesis, and immunomodulation properties. To address such a dilemma, we employed a simple and facile strategy to utilize resveratrol (RSV) as a functional component to mediate hydrogel gelation in this study. The structure of this obtained hydrogel was supported by a multibond network, which not only endowed the resultant product with superior mechanical strength and moderate adhesiveness but also effectively prolonged the bioavailability of RSV.

View Article and Find Full Text PDF

Nucleophilic aromatic substitutions (SAr) are amongst the most widely used processes in the pharmaceutical and agrochemical industries, allowing convergent assembly of complex molecules through C-C and C-X (X = O, N, S) bond formation. SAr reactions are typically carried out using forcing conditions, involving polar aprotic solvents, stoichiometric bases and elevated temperatures, which do not allow for control over reaction selectivity. Despite the importance of SAr chemistry, there are only a handful of selective catalytic methods reported that rely on small organic hydrogen-bonding or phase-transfer catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!