Background: Intracoronary injection of bone marrow mononuclear cells (BMMNC) is a common clinical protocol of cell transplantation for heart disease, but poor engraftment of donor cells in the heart, which will limit its therapeutic efficacy, is a major issue. Initial "retention" (endothelial adherence and/or extravasation) of BMMNC immediately after intracoronary injection is a key step toward successful engraftment; however, this event has not been fully characterized. The aim of this study is to quantitatively clarify the frequency of "retention" of BMMNC after intracoronary injection, determine the impact of prior induction of ischemia-reperfusion injury on "retention" efficiency, and elucidate the underlying mechanisms focusing on adhesion molecule-mediated cell-cell interactions.
Methods: One million BMMNC collected from green fluorescent protein (GFP)-transgenic mice were injected into the coronary arteries of syngeneic wild-type mouse hearts under Langendorff perfusion. Retention efficiency was quantitatively estimated from the GFP-positive cell number flushed out into the coronary effluent.
Results: Whereas only 13.3 ± 1.2% of injected BMMNC were retained into normal hearts, prior induction of 30-minute ischemia and 30-minute reperfusion increased the retention efficiency to 36.5 ± 1.6% (p < 0.05, n = 8). Immunoconfocal observation further confirmed this enhanced retention after ischemia-reperfusion. Noticeably, the enhanced retention efficiency after ischemia-reperfusion treatment was diminished by administration of anti-P-selectin antibody (8.3 ± 0.8%, p < 0.05), but was not affected by inhibiting intercellular adhesion molecule-1 (39.6 ± 3.3%) or vascular cell adhesion molecule-1 (43.9 ± 2.9%).
Conclusions: Retention efficiency of intracoronary-injected BMMNC was poor in a model of isolated, crystalloid-perfused murine hearts. An antecedent period of global ischemia-reperfusion increased the retention via P-selectin-dependent BMMNC-endothelial interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.healun.2010.09.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!