Two novel β-glucosidase genes designated as bgl1D and bgl1E, which encode 172- and 151-aa peptides, respectively, were cloned by function-based screening of a metagenomic library from uncultured soil microorganisms. Sequence analyses indicated that Bgl1D and Bgl1E exhibited lower similarities with some putative β-glucosidases. Functional characterization through high-performance liquid chromatography demonstrated that purified recombinant Bgl1D and Bgl1E proteins hydrolyzed D-glucosyl-β-(1-4)-D-glucose to glucose. Using p-nitrophenyl-β-D-glucoside as substrate, K(m) was 0.54 and 2.11 mM, and k(cat)/K(m) was 1489 and 787 mM(-1) min(-1) for Bgl1D and Bgl1E, respectively. The optimum pH and temperature for Bgl1D was pH 10.0 and 30°C, while the optimum values for Bgl1E were pH 10.0 and 25°C. Bgl1D exhibited habitat-specific characteristics, including higher activity in lower temperature and at high concentrations of AlCl(3) and LiCl. Bgl1D also displayed remarkable activity across a broad pH range (5.5-10.5), making it a potential candidate for industrial applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2010.09.114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!