Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Cardiopulmonary bypass-induced oxidative stress initiates inflammation that can damage the myocardium. This study tested whether cardioplegia enriched with the intermediary metabolite and antioxidant pyruvate dampens postbypass myocardial inflammation.
Methods: Pigs were maintained on cardiopulmonary bypass while their hearts were arrested for 60 minutes with 4:1 blood:crystalloid cardioplegia, in which the crystalloid contained 188 mM glucose ± 24 mM pyruvate. Pigs were weaned from bypass after 30 minutes of whole blood reperfusion and recovered for 4 hours. Glutathione (GSH) and glutathione disulfide (GSSG) were measured in coronary sinus plasma to indirectly monitor myocardial GSH redox state (GSH/GSSG). Left ventricular myocardium was sampled 4 hours after cardiopulmonary bypass for analyses of C-reactive protein, matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinase-2 (TIMP-2), and to assess neutrophil infiltration by histology and myeloperoxidase assay.
Results: Coronary sinus GSH/GSSG fell 70% after cardiopulmonary bypass with control cardioplegia, but pyruvate cardioplegia produced a robust increase in coronary sinus GSH/GSSG that persisted for 4 hours after bypass. Myocardial C-reactive protein content increased 5.6-fold after control bypass, and neutrophil infiltration and myeloperoxidase activity also increased, but pyruvate-fortified cardioplegia prevented these inflammatory effects. Control cardioplegia lowered myocardial TIMP-2 content by 59% and increased matrix metalloproteinase-9 activity by 35% versus nonbypass sham values, but pyruvate cardioplegia increased TIMP-2 content ninefold versus control cardioplegia and prevented the increase in matrix metalloproteinase-9. Matrix metalloproteinase-2 was not affected by bypass ± pyruvate.
Conclusions: Pyruvate-enriched cardioplegia dampens cardiopulmonary bypass-induced myocardial inflammation. Increased GSH/GSSG and TIMP-2 may mediate pyruvate's effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.athoracsur.2010.06.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!