Eggshell chitin and chitin-interacting proteins prevent polyspermy in C. elegans.

Curr Biol

Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada.

Published: November 2010

Development requires fertilization by a single sperm. In Caenorhabditis elegans, fertilization occurs in a sperm-filled spermatheca, implying the barrier to polyspermy is generated in this compartment. Eggshell chitin synthesis is initiated at fertilization, and chitin is deposited before the zygote exits the spermatheca. Whereas polyspermy is very rare in wild-type, here we report an incidence of 14%-51% in zygotes made chitin deficient by loss of chitin synthase-1 (CHS-1), the CHS-1 substrate UDP-N-acetylglucosamine, the CHS-1-interacting protein EGG-3, or the sperm-provided protein SPE-11. The spe-11(hc90) mutant deposits chitin at the male end but fails to complete a continuous layer. The polyspermy barrier is also compromised by loss of the chitin-binding protein CBD-1 or the GLD-1-regulated LDL receptor-like EGG-1, together with its homolog, EGG-2. Loss of CBD-1 or EGG-1/2 disrupts oocyte cortical distribution of CHS-1, as well as MBK-2 and EGG-3. In CBD-1 or EGG-1/2 deficiency, chitin is synthesized but the eggshell is fractured, suggesting aberrantly clustered CHS-1/MBK-2/EGG-3 may fail to support construction of a continuous eggshell. Together, our results show that eggshell chitin is required to prevent polyspermy in C. elegans, in addition to its previously reported requirement in polar body extrusion and polarization of the zygote.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2010.09.059DOI Listing

Publication Analysis

Top Keywords

eggshell chitin
12
prevent polyspermy
8
polyspermy elegans
8
cbd-1 egg-1/2
8
chitin
7
eggshell
5
polyspermy
5
chitin chitin-interacting
4
chitin-interacting proteins
4
proteins prevent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!