Leptospirosis is a world spread zoonosis caused by members of the genus Leptospira. Although leptospires were identified as the causal agent of leptospirosis almost 100 years ago, little is known about their biology, which hinders the development of new treatment and prevention strategies. One of the several aspects of the leptospiral biology not yet elucidated is the process by which outer membrane proteins (OMPs) traverse the periplasm and are inserted into the outer membrane. The crystal structure determination of the conserved hypothetical protein LIC12922 from Leptospira interrogans revealed a two domain protein homologous to the Escherichia coli periplasmic chaperone SurA. The LIC12922 NC-domain is structurally related to the chaperone modules of E. coli SurA and trigger factor, whereas the parvulin domain is devoid of peptidyl prolyl cis-trans isomerase activity. Phylogenetic analyses suggest a relationship between LIC12922 and the chaperones PrsA, PpiD and SurA. Based on our structural and evolutionary analyses, we postulate that LIC12922 is a periplasmic chaperone involved in OMPs biogenesis in Leptospira spp. Since LIC12922 homologs were identified in all spirochetal genomes sequenced to date, this assumption may have implications for the OMPs biogenesis studies not only in leptospires but in the entire Phylum Spirochaetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2010.10.009DOI Listing

Publication Analysis

Top Keywords

periplasmic chaperone
12
crystal structure
8
hypothetical protein
8
protein lic12922
8
chaperone sura
8
outer membrane
8
omps biogenesis
8
lic12922
6
structure leptospiral
4
leptospiral hypothetical
4

Similar Publications

To promote intracellular survival and infection, Legionella spp. translocate hundreds of effector proteins into eukaryotic host cells using a type IV b protein secretion system (T4bSS). T4bSS are well known to translocate soluble as well as transmembrane domain-containing effector proteins (TMD-effectors) but the mechanisms of secretion are still poorly understood.

View Article and Find Full Text PDF

Elucidating details of biology's selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterize () LanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, La.

View Article and Find Full Text PDF

Deciphering the Interdomain Coupling in a Gram-Negative Bacterial Membrane Insertase.

J Phys Chem B

October 2024

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States.

YidC is a membrane protein that plays an important role in inserting newly generated proteins into lipid membranes. The Sec-dependent complex is responsible for inserting proteins into the lipid bilayer in bacteria. YidC facilitates the insertion and folding of membrane proteins, both in conjunction with the Sec complex and independently.

View Article and Find Full Text PDF

Gram-negative bacteria produce chaperone-usher pathway pili, which are extracellular protein fibers tipped with an adhesive protein that binds to a receptor with stereochemical specificity to determine host and tissue tropism. The outer-membrane usher protein, together with a periplasmic chaperone, assembles thousands of pilin subunits into a highly ordered pilus fiber. The tip adhesin in complex with its cognate chaperone activates the usher to allow extrusion across the outer membrane.

View Article and Find Full Text PDF

Dual client binding sites in the ATP-independent chaperone SurA.

Nat Commun

September 2024

Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.

The ATP-independent chaperone SurA protects unfolded outer membrane proteins (OMPs) from aggregation in the periplasm of Gram-negative bacteria, and delivers them to the β-barrel assembly machinery (BAM) for folding into the outer membrane (OM). Precisely how SurA recognises and binds its different OMP clients remains unclear. Escherichia coli SurA comprises three domains: a core and two PPIase domains (P1 and P2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!