An analytical method was developed for the determination of thiols in biological samples. Reverse phase chromatography coupled to ICP quadrupole MS or Orbitrap MS was employed for the separation and detection of thiols. For the determination of total thiols, oxidized thiols were reduced using dithiothreitol (DTT). Reduction efficiencies for species of interest were found to be close to 100%. Reduced thiols were derivatized by p-hydroxymercuribenzoate (PHMB) and then separated on a C8 column. Optimization of the extraction, separation and detection steps of the HPLC-ICP-MS and HPLC-Orbitrap MS methods was carried out. Detection limits for cysteine, homocysteine, selenocysteine, glutathione, selenomethionine and cysteinyl-glycine were found to be 18, 34, 39, 12, 128 and 103 fmol, respectively, using HPLC-Orbitrap MS and 730, 1110, 440, 1110 and 580 fmol for cysteine, homocysteine, selenocysteine, glutathione, and cysteinyl-glycine using HPLC-ICP-MS. Contrary to expectation, the LODs and RSDs are higher for the HPLC-ICP-MS instrument, therefore HPLC-Orbitrap MS was used for the determination of thiols in yeast samples. Three different brands of baker's yeast and a selenized yeast were analyzed. The GSH and cysteine levels found in these samples ranged from 4.45 to 17.87 μmol g(-1) and 0.61 to 1.32 μmol g(-1), respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2010.09.023DOI Listing

Publication Analysis

Top Keywords

determination thiols
12
thiols biological
8
biological samples
8
high performance
8
performance liquid
8
separation detection
8
cysteine homocysteine
8
homocysteine selenocysteine
8
selenocysteine glutathione
8
μmol g-1
8

Similar Publications

Flow injection mass spectrometry (FI-MS) is widely employed for high-throughput metabolome analysis, yet the absence of prior separation leads to significant matrix effects, thereby limiting the metabolome coverage. In this study, we introduce a novel photosensitive MS probe, iTASO-ONH, integrated with FI-MS to establish a high-throughput strategy for submetabolome analyses. The iTASO probe features a conjugated-imino sulfonate moiety for efficient photolysis under 365 nm irradiation and a reactive group for selective metabolite labeling.

View Article and Find Full Text PDF

Biarsenical-based fluorescent labeling of metallothioneins as a method for ultrasensitive quantification of poly-Cys targets.

Anal Chim Acta

February 2025

Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland. Electronic address:

Background: Mammalian metallothioneins (MTs) play a crucial role in maintaining Zn(II) and Cu(I) homeostasis, as well as regulating the cellular redox potential. They are involved in cancer resistance to cisplatin-related drugs and the sequestration of toxic metal ions. To investigate their participation in specific physiological and pathological processes, it is imperative to develop an analytical method for measuring changes in protein concentration both in vitro and in vivo.

View Article and Find Full Text PDF

A facile assay for zDHHC palmitoyl transferase activation elucidates effects of mutation and modification.

J Lipid Res

January 2025

Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan. Electronic address:

At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23-24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies.

View Article and Find Full Text PDF

Immobilization of 4-MBA & Cu on Au nanoparticles modified screen-printed electrode for glyphosate detection.

Talanta

January 2025

College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China.

This study introduces an innovative electrochemical biosensor, engineered through the functionalization screen-printed electrode (SPE) with a coordination complex comprised of 4-mercaptobenzoic acid (4-MBA) and copper ions (Cu), achieving precise quantitative determination of glyphosate. Electrodepositing gold nanoparticles (AuNPs) onto the electrode surface, forming a self-assembled monolayer (SAM) of 4-MBA via thiol-gold interactions, and immobilizing Cu via coordination bonding with the monolayer, finalizing the electrochemical biosensor construction as Cu/4-MBA/AuNPs/SPE. The successful modification of the biosensor interface is confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical characterization.

View Article and Find Full Text PDF

Background/objectives: Ergothioneine (EGT) is an effective antioxidant that animals cannot produce and has an important anti-inflammatory role in cell protection, which can help lower the risk of various diseases. In this study, we investigated the potential role of gut microbiota in the production of EGT, which was found to increase in the mouse liver after dietary supplementation with betaine (BET) or polydextrose (PDX).

Methods: The effects of BET and PDX on the gut microbiota and tissue EGT content were investigated using a diet-induced obese mouse model and simulated fermentation in the human colon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!