In vivo thyroid hormones control the binding to mitochondria of low molecular weight water-soluble cytoplasmic mediators that are capable to induce oxidative phosphorylation uncoupling, by increasing the sensitivity of mitochondria to the effects of these mediators. In hyperthyroid rat liver mitochondria cytoplasmic mediators stimulate the phosphate-dependent transport of K+ and H+ in a greater degree than in liver mitochondria of control rats. The increase in the oxidative phosphorylation uncoupling by cytoplasmic mediators is one of mechanisms of thermogenesis stimulation by thyroid hormones.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cytoplasmic mediators
16
thyroid hormones
12
oxidative phosphorylation
8
phosphorylation uncoupling
8
liver mitochondria
8
mitochondria
5
mediators
5
[regulation thyroid
4
hormones interaction
4
interaction mitochondria
4

Similar Publications

Guanylate binding proteins (GBPs) are large interferon-inducible GTPases, executing essential host defense activities against Toxoplasma gondii, an invasive intracellular apicomplexan protozoan parasite of global importance. T. gondii establishes a parasitophorous vacuole (PV) which shields the parasite from the host's intracellular defense mechanisms.

View Article and Find Full Text PDF

Aurora B controls microtubule stability to regulate abscission dynamics in stem cells.

Cell Rep

January 2025

Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands. Electronic address:

Abscission is the last step of cell division. It separates the two sister cells and consists of cutting the cytoplasmic bridge. Abscission is mediated by the ESCRT membrane remodeling machinery, which also triggers the severing of a thick bundle of microtubules.

View Article and Find Full Text PDF

Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway.

J Integr Plant Biol

January 2025

Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.

Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins.

View Article and Find Full Text PDF

Metabolism-lipid droplet-nucleic acid crosstalk to regulate lipid storage and other cellular processes in oleaginous Rhodococcus bacteria.

Biol Cell

January 2025

INBIOP (Instituto de Biociencias de la Patagonia), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina.

Actinobacteria belonging to Mycobacterium and Rhodococcus genera are able to synthesize and intracellularly accumulate variable amounts of triacylglycerols (TAG) in the form of lipid droplets (LDs). The lipid storage capacity of LDs in cells is controlled by the balance between lipogenesis and lipolysis. The growth of LDs in bacterial cells may be directly promoted by TAG biosynthesis, whereas TAG degradation might result in the reduction of LD sizes and lipid storage capacity.

View Article and Find Full Text PDF

Modelling Peroxisomal Disorders in Zebrafish.

Cells

January 2025

Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK.

Peroxisomes are ubiquitous, dynamic, oxidative organelles with key functions in cellular lipid metabolism and redox homeostasis. They have been linked to healthy ageing, neurodegeneration, cancer, the combat of pathogens and viruses, and infection and immune responses. Their biogenesis relies on several peroxins (encoded by genes), which mediate matrix protein import, membrane assembly, and peroxisome multiplication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!