Objective: Infravesical obstruction leads to growth of urinary bladder smooth-muscle cells. The ganglion cells innervating the bladder muscle also increase in size. Stretch of detrusor muscle cells rapidly activates c-Jun NH₂-terminal kinase (JNK), which phosphorylates the transcription factor c-Jun, and stimulates the synthesis of the cotranscription factor ATF3. The aim of the study was to determine whether ATF3 and p-c-Jun were involved in growth of bladder smooth-muscle and ganglion cells.

Material And Methods: The urethra was partially obstructed in female rats. After 3 days or 10 weeks bladders were weighed, fixated and cut for immunohistochemistry to demonstrate ATF3 and p-c-Jun. Ganglia were processed separately. Unoperated and sham-operated rats were used as controls.

Results: There was no ATF3 or p-c-Jun in control detrusor muscle. After 3 days of obstruction bladder weight had nearly doubled. Almost all nuclei in the detrusor showed immunofluorescence for ATF3 and p-c-Jun. After 10 weeks bladder weight had increased 10-fold. Almost all detrusor nuclei still showed p-c-Jun, but few had ATF3 activity. In control ganglia there was no ATF3 and only faint nuclear p-c-Jun activity. After 3 days of obstruction the ganglion cells had increased in size and many nuclei showed intense immunofluorescence for ATF3 and p-c-Jun. After 10 weeks the ganglion cell size had increased further. There was no ATF3 activity and no more p-c-Jun than in control ganglia.

Conclusion: ATF3 and p-c-Jun seem to be involved in the growth of the detrusor muscle and its motor innervation following infravesical outlet obstruction.

Download full-text PDF

Source
http://dx.doi.org/10.3109/00365599.2010.521188DOI Listing

Publication Analysis

Top Keywords

atf3 p-c-jun
28
detrusor muscle
16
p-c-jun involved
12
involved growth
12
atf3
11
p-c-jun
10
growth detrusor
8
muscle motor
8
motor innervation
8
bladder smooth-muscle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!