There is a growing interest in evaluating molecular markers as predictors of response to new generation of targeted cancer therapies. One of such areas is biological therapy targeting epidermal growth factor receptor gene (EGFR) in lung cancer. The testing of tumor tissue is focused on specific EGFR mutations and EGFR gene amplification, since tumors exhibiting positivity of either of the two marker types are highly sensitive towards the treatment. Although traditional methods of DNA sequencing and fluorescence in situ hybridization are still in use for the detection of EGFR mutations and gene amplification, respectively, there is a need for new dedicated techniques with the primary emphasis on simplicity, sensitivity, speed and cost effectiveness. The main purpose of this work was to integrate diverse assays for both EGFR tests onto a single platform to eliminate the need for different instruments and separate processing. We demonstrate a chip capillary electrophoresis (chipCE) application for EGFR mutation detection by a combination of fragment analysis and denaturing CE along with multiplex ligation-dependent probe amplification (MLPA) for evaluation of EGFR amplification. All separations are carried out in denaturing sieving polymer on a modified Bioanalyzer 2100 chipCE instrument running at temperatures of up to 65°C. The main strength of the resulting high-resolution chipCE application is in its simplicity, speed of analysis and minimal amount of sample required for complete testing of EGFR status. Such an approach could potentially fit medium throughput laboratories providing molecular pathology services for clinical oncologists with fast turnaround times and limited consumption of tissue material.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201000156DOI Listing

Publication Analysis

Top Keywords

egfr
9
high-resolution chipce
8
detection egfr
8
egfr gene
8
lung cancer
8
combination fragment
8
fragment analysis
8
analysis denaturing
8
egfr mutations
8
gene amplification
8

Similar Publications

This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.

View Article and Find Full Text PDF

The benefits of sleep extend beyond the nervous system. Peripheral tissues impact sleep regulation, and increased sleep is observed in response to damaging conditions, even those that selectively affect non-neuronal cells. However, the 'sleep need' signal released by stressed tissues is not known.

View Article and Find Full Text PDF

Orthologs of and impact sleep in mice.

Sleep Adv

December 2024

Murine Phenotyping Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Model organisms such as are powerful tools to study the genetic basis of sleep. Previously, we identified the genes and using selective breeding for long and short sleep duration in an outbred population of . is a transcription factor that is part of the epidermal growth factor receptor signaling pathway, while is involved in proline and arginine metabolism.

View Article and Find Full Text PDF

Objective: Epithelial-mesenchymal transition (EMT) and metastasis are the primary causes of mortality in non-small-cell lung cancer (NSCLC). 5'-3' exoribonuclease 2 (XRN2) plays an important role in the process of tumor EMT. Thus, this investigation mainly aimed to clarify the precise molecular pathways through which XRN2 contributes to EMT and metastasis in NSCLC.

View Article and Find Full Text PDF

Objective: Patients with non-small cell lung cancer (NSCLC) have poor prognoses. Sulfatase 1 (SULF1) is an extracellular neutral sulfatase and is involved in multiple physiological processes. Hence, this study investigated the function and possible mechanisms of SULF1 in NSCLC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!