Prediction of exposure-response relationships to support first-in-human study design.

AAPS J

Amgen Inc., Seattle, WA, USA.

Published: December 2010

In drug development, phase 1 first-in-human studies represent a major milestone as the drug moves from preclinical discovery to clinical development activities. The safety of human subjects is paramount to the conduct of these studies and regulatory considerations guide activities. Forces of evolution on the pharmaceutical industry are re-shaping the first-in-human dose selection strategy. Namely, high attrition rates in part due to lack of efficacy have led to the re-organization of research and development organizations around the umbrella of translational research. Translational research strives to bring basic research advances into the clinic and support the reverse transfer of information to enhance compound selection strategies. Pharmacokinetic/pharmacodynamic (PK/PD) modeling holds a unique position in translational research by attempting to integrate diverse sets of information. PK/PD modeling has demonstrated utility in dose selection and trial design for later stages of drug development and is now being employed with greater prevalence in the translational research setting to manage risk (i.e., oncology and inflammation/immunology). Moving from empirical E (max) models to more mechanistic representations of the biological system, a higher fidelity of human predictions is expected. Strategies that have proven useful for PK predictions are being applied to PK/PD predictions. This review article examines examples of the application of PK/PD modeling in establishing target concentrations for supporting first-in-human study design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976982PMC
http://dx.doi.org/10.1208/s12248-010-9236-7DOI Listing

Publication Analysis

Top Keywords

pk/pd modeling
12
first-in-human study
8
study design
8
drug development
8
dose selection
8
prediction exposure-response
4
exposure-response relationships
4
relationships support
4
first-in-human
4
support first-in-human
4

Similar Publications

Population pharmacokinetics and pulmonary modeling of eravacycline and the determination of microbiological breakpoint and cutoff of PK/PD.

Antimicrob Agents Chemother

January 2025

Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China.

Eravacycline is a broad-spectrum fluorocycline currently approved for complicated intra-abdominal infections (cIAIs). In lung-infection models, it is effective against methicillin-resistant (MRSA) and tetracycline-resistant MRSA. As such, we aimed to develop a population pharmacokinetic/pharmacodynamic (PK/PD) model to evaluate eravacycline's pulmonary distribution and kinetics.

View Article and Find Full Text PDF

Quantifying natural amyloid plaque accumulation in the continuum of Alzheimer's disease using ADNI.

J Pharmacokinet Pharmacodyn

January 2025

Global PK/PD/PMx, Eli Lilly and Company, 8 Arlington Square West, Downshire Way, Bracknell, Berkshire, RG12 1PU, UK.

Brain amyloid beta neuritic plaque accumulation is associated with an increased risk of progression to Alzheimer's disease (AD) [Pfeil, J., et al. in Neurobiol Aging 106: 119-129, 2021].

View Article and Find Full Text PDF

Whole-Body Physiologically Based Pharmacokinetic Modeling of GalNAc-Conjugated siRNAs.

Pharmaceutics

January 2025

Department of Pharmaceutical Bioscience, Translational Drug Discovery and Development, Uppsala University, SE-75124 Uppsala, Sweden.

: N-acetyl-galactosamine small interfering RNAs (GalNAc-siRNA) are an emerging class of drugs due to their durable knockdown of disease-related proteins. Direct conjugation of GalNAc onto the siRNA enables targeted uptake into hepatocytes via GalNAc recognition of the Asialoglycoprotein Receptor (ASGPR). With a transient plasma exposure combined with a prolonged liver half-life, GalNAc-siRNA exhibits distinct disposition characteristics.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) poses a critical global health threat, necessitating the optimal use of existing antibiotics. Pharmacokinetic/pharmacodynamic (PK/PD) principles provide a scientific framework for optimizing antimicrobial therapy, particularly to respond to evolving resistance patterns. This review examines PK/PD strategies for antimicrobial dosing optimization, focusing on three key aspects.

View Article and Find Full Text PDF

Background: Antibody-drug conjugate (ADC) is an anticancer drug that links toxins to specifically targeted antibodies via linkers, offering the advantages of high target specificity and high cytotoxicity. However, complexity of its structural composition poses a greater difficulty for drug design studies.

Objectives: Pharmacokinetic/pharmacodynamic (PK/PD) based consideration of ADCs has increasingly become a hot research topic for optimal drug design in recent years, providing possible ideas for obtaining ADCs with desirable properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!