We demonstrate generation of 48fs pulses with linear chirp using a short (27mm) fiber optical parametric oscillator (FOPO), which is synchronously pumped by a mode-locked ytterbium-doped fiber laser. We also study the pulse quality for both the short- and long-wavelength operation where the fiber length inside of the oscillator varies from 17 to 61mm. The optimal pulse duration is observed only in the short-wavelength operation. Furthermore, we model the FOPO system as a single-pass parametric amplifier including dispersive pulse broadening and walk-off between the pump and output. The optimal condition arises from the minimization of the walk-off and dispersion. When walk-off is large, the parametric amplification process is most efficient over some reduced effective fiber length, leading to an upper limit in the amount of the observed pulse broadening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.35.003516 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!