Materials processing with a tightly focused femtosecond laser vortex pulse.

Opt Lett

Laser Physics Centre, Research School of Physics and Engineering, The Australian National University,Canberra Australian Capital Territory 0200, Australia.

Published: October 2010

In this Letter we present the first (to our knowledge) demonstration of material modification using tightly focused single femtosecond laser vortex pulses. Double-charge femtosecond vortices were synthesized with a polarization-singularity beam converter based on light propagation in a uniaxial anisotropic medium and then focused using moderate- and high-NA optics (viz., NA=0.45 and 0.9) to ablate fused silica and soda-lime glass. By controlling the pulse energy, we consistently machine micrometer-size ring-shaped structures with <100nm uniform groove thickness.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.35.003417DOI Listing

Publication Analysis

Top Keywords

tightly focused
8
femtosecond laser
8
laser vortex
8
materials processing
4
processing tightly
4
focused femtosecond
4
vortex pulse
4
pulse letter
4
letter knowledge
4
knowledge demonstration
4

Similar Publications

Background: Extracellular vesicles are easily accessible in various biofluids and allow the assessment of disease-related changes in the proteome. This has made them a promising target for biomarker studies, especially in the field of neurodegeneration where access to diseased tissue is very limited. Genetic variants in the LRRK2 gene have been linked to both familial and sporadic forms of Parkinson's disease.

View Article and Find Full Text PDF

This study aimed at developing a sustainable waste management from poultry farm by integrating microalgae cultivation with the anaerobic digestion effluent of chicken wastes (ADEC). The analysis was focused on system performance, resource recovery and environmental impact of microalgal biomass-derived added value products. Laboratory-scale of three different systems, i.

View Article and Find Full Text PDF

Construction of Chirality-Sorting Optical Force Pairs.

Phys Rev Lett

December 2024

Optics Research Group, Delft University of Technology, Department of Imaging Physics, Lorentzweg 1, 2628CJ Delft, The Netherlands.

Chiral objects are abundant in nature, and although the enantiomers have almost identical physical properties apart from their handedness, they can exhibit significantly different chemical properties and biological functions. This underscores the importance of sorting chiral substances. In this Letter, we demonstrate that chirality-sorting optical force pairs can be inversely generated in a tightly focused Gaussian beam by tailoring the input polarization state.

View Article and Find Full Text PDF

Identification of Multi-functional Therapeutic Peptides Based on Prototypical Supervised Contrastive Learning.

Interdiscip Sci

December 2024

Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China.

High-throughput sequencing has exponentially increased peptide sequences, necessitating a computational method to identify multi-functional therapeutic peptides (MFTP) from their sequences. However, existing computational methods are challenged by class imbalance, particularly in learning effective sequence representations. To address this, we propose PSCFA, a prototypical supervised contrastive learning with a feature augmentation method for MFTP prediction.

View Article and Find Full Text PDF

Biomolecular condensates (BCs) are crucial membraneless organelles formed through the process of liquid-liquid phase separation (LLPS) involving proteins and nucleic acids. These LLPS processes are tightly linked with essential cellular activities. Stress granules (SGs), functioning as cytoplasmic BCs, play indispensable roles in maintaining cellular homeostasis and are implicated in diseases like cancers and neurodegenerative disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!