Skin exposure to low-dose ultraviolet B (UVB) light up-regulates the expression of matrix metalloproteinase-1 (MMP-1), thus contributing to premature skin aging (photo-aging). Although cyclooxygenase-2 (COX- 2) and its product, prostaglandin E(2) (PGE((2))), have been associated with UVB-induced signaling to MMP expression, very little are known about the roles of lipoxygenases and their products, especially leukotriene B((4)) (LTB((4))) and 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), in MMP-1 expression in skin keratinocytes. In the present study, we demonstrate that BLT2, a cell surface receptor for LTB((4)) and 12(S)-HETE, plays a critical role in UVB-mediated MMP-1 upregulation in human HaCaT keratinocytes. Moreover, our results demonstrated that BLT2-mediated MMP-1 upregulation occurs through a signaling pathway dependent on reactive oxygen species (ROS) production and the subsequent stimulation of ERK. Blockage of BLT2 via siRNA knockdown or with the BLT2-antagonist LY255283 completely abolished the up-regulated expression of MMP-1 induced by low-dose UVB irradiation. Finally, when HaCaT cells were transiently transfected with a BLT2 expression plasmid, MMP-1 expression was significantly enhanced, along with ERK phosphorylation, suggesting that BLT2 overexpression alone is sufficient for MMP-1 up-regulation. Together, our results suggest that the BLT2-ROS- ERK-linked cascade is a novel signaling mechanism for MMP-1 upregulation in low-dose UVB- irradiated keratinocytes and thus potentially contributes to photo-aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3015157 | PMC |
http://dx.doi.org/10.3858/emm.2010.42.12.086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!