Background & Objectives: The resistance of Mycobacterium tuberculosis to streptomycin, a core drug for treatment of category II tuberculosis (TB) has posed a major challenge to the health providers as well as research workers worldwide and has severely compromised the therapeutic options. A significant proportion of streptomycin resistant M. tuberculosis isolates failed to show mutations in conventional targets like rpsL and rrs. Although efflux, permeability, etc. are also known to contribute, yet a substantial proportion of isolates remains resistant suggesting involvement of other unknown mechanism. A resistant isolate may show altered gene as well as protein expression under drug induced conditions and a whole cell proteome analysis under induced conditions might help in further understanding the mechanisms of drug resistance. The present study was therefore designed with the objective to identify proteins related to streptomycin resistance in M. tuberculosis isolate grown in presence and absence of streptomycin (SM).

Methods: A clinical isolate of M. tuberculosis from Mycobacterial Repository Centre at the Institute (NJIL & OMD), Agra was grown in Sauton's medium for 36 h with/without subinhibitory concentration of the drug (2 μg/ml) and the cell lysate of isolates was prepared by sonication and centrifugation. Two-dimensional (2D) gel electrophoresis was employed to study the protein profile. The selected proteins were finally identified by MALDI-TOF mass spectrometry.

Results: Our study revealed eight inducible proteins (DnaK, fabG4, DNA-binding, hypothetical, two 14 kDa antigen and two 10 kDa chaperonin) that were upregulated in the presence of drug.

Interpretation & Conclusion: This preliminary study has thrown light on whether or not and how the resistant isolate responds to streptomycin at its non-toxic but sub-inhibitory concentration. An in-depth study of the upregulated proteins will give an insight into probable sites of drug action other than established primary sites.

Download full-text PDF

Source

Publication Analysis

Top Keywords

protein expression
8
mycobacterium tuberculosis
8
two-dimensional gel
8
gel electrophoresis
8
resistant isolate
8
induced conditions
8
streptomycin
6
tuberculosis
6
drug
5
study
5

Similar Publications

The Role of Podocytes in Lupus Pathology.

Curr Rheumatol Rep

December 2024

Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-937, Boston, MA, 02215, USA.

Purpose Of Review: Kidney injury due to lupus nephritis (LN) is a severe and sometimes life-threatening sequela of systemic lupus erythematosus. Autoimmune injury to podocytes has been increasingly demonstrated to be a key driver of LN-related kidney injury because these cells play key roles in glomerular filtration barrier homeostasis. Irreparable podocyte injury impairs these processes and can lead to proteinuria, which is an indicator of poor prognosis in LN.

View Article and Find Full Text PDF

p62 Binding to Protein Kinase C Regulates HIV-1 gp120 V3 Loop Induced Microglial Inflammation.

Inflammation

December 2024

Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China.

The main pathogenic mechanism of HIV-associated neurocognitive disorders (HAND) is neuronal apoptosis induced by inflammatory mediators, in which microglial inflammation plays a crucial role. However, the exact pathogenic mechanism remains unclear. Previous studies have shown that the HIV-1 gp120 V3 loop can trigger inflammation in CHME-5 microglia.

View Article and Find Full Text PDF

Elastic fibers of the internal and external elastic laminae maintain blood vessel shapes. Impairment of smooth muscle cell function leads to vascular disease development. F-box and WD-40 domain-containing protein 2 (FBXW2) is associated with elastic fibers and osteocalcin expression for bone regeneration in the periosteum.

View Article and Find Full Text PDF

Overcoming luminal breast cancer (BrCa) progression remains a critical challenge for improved overall patient survival. RUNX2 has emerged as a protein related to aggressiveness in triple-negative BrCa, however its role in luminal tumors remains elusive. We have previously shown that active FGFR2 (FGFR2-CA) contributes to increased tumor growth and that RUNX2 expression was high in hormone-independent mouse mammary carcinomas.

View Article and Find Full Text PDF

Amino acid metabolism provides significant insight into the development and prevention of many viral diseases. Therefore, the present study aimed to compare the amino acid profiles of hand, foot, and mouth disease (HFMD) patients with those of healthy individuals and to further reveal the molecular mechanisms of HFMD severity. Using UPLC-MS/MS, we determined the plasma amino acid expression profiles of pediatric patients with HFMD (mild,  = 42; severe, = 43) and healthy controls ( = 25).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!