A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pendrin modulates ENaC function by changing luminal HCO3-. | LitMetric

AI Article Synopsis

  • ENaC and pendrin work together in the kidneys to absorb NaCl in specific regions, even though they are found in different cell types.
  • Aldosterone treatment in pendrin-null mice resulted in lower ENaC activity and abundance compared to wild-type mice, indicating that pendrin is important for ENaC function.
  • The addition of NaHCO(3) and acetazolamide improved acid-base balance and ENaC function in pendrin-null mice, suggesting that bicarbonate levels affect ENaC directly, enhancing its activity and abundance.

Article Abstract

The epithelial Na(+) channel, ENaC, and the Cl(-)/HCO(3)(-) exchanger, pendrin, mediate NaCl absorption within the cortical collecting duct and the connecting tubule. Although pendrin and ENaC localize to different cell types, ENaC subunit abundance and activity are lower in aldosterone-treated pendrin-null mice relative to wild-type mice. Because pendrin mediates HCO(3)(-) secretion, we asked if increasing distal delivery of HCO(3)(-) through a pendrin-independent mechanism "rescues" ENaC function in pendrin-null mice. We gave aldosterone and NaHCO(3) to increase pendrin-dependent HCO(3)(-) secretion within the connecting tubule and cortical collecting duct, or gave aldosterone and NaHCO(3) plus acetazolamide to increase luminal HCO(3)(-) concentration, [HCO(3)(-)], independent of pendrin. Following treatment with aldosterone and NaHCO(3), pendrin-null mice had lower urinary pH and [HCO(3)(-)] as well as lower renal ENaC abundance and function than wild-type mice. With the addition of acetazolamide, however, acid-base balance as well as ENaC subunit abundance and function was similar in pendrin-null and wild-type mice. We explored whether [HCO(3)(-)] directly alters ENaC abundance and function in cultured mouse principal cells (mpkCCD). Amiloride-sensitive current and ENaC abundance rose with increased [HCO(3)(-)] on the apical or the basolateral side, independent of the substituting anion. However, ENaC was more sensitive to changes in [HCO(3)(-)] on the basolateral side of the monolayer. Moreover, increasing [HCO(3)(-)] on the apical and basolateral side of Xenopus kidney cells increased both ENaC channel density and channel activity. We conclude that pendrin modulates ENaC abundance and function, at least in part by increasing luminal [HCO(3)(-)] and/or pH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014007PMC
http://dx.doi.org/10.1681/ASN.2009121257DOI Listing

Publication Analysis

Top Keywords

enac abundance
16
abundance function
16
enac
12
pendrin-null mice
12
wild-type mice
12
aldosterone nahco3
12
basolateral side
12
pendrin modulates
8
modulates enac
8
enac function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!