A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans. | LitMetric

Redox pathways play a key role in pathogenesis. Glutathione, a central molecule in redox homeostasis in yeasts, is an essential metabolite, but its requirements can be met either from endogenous biosynthesis or from the extracellular milieu. In this report we have examined the importance of glutathione biosynthesis in two major human opportunistic fungal pathogens, Candida albicans and Candida glabrata. As the genome sequence of C. glabrata had suggested the absence of glutathione transporters, we initially investigated exogenous glutathione utilization in C. glabrata by disruption of the MET15 gene, involved in methionine biosynthesis. We observed an organic sulphur auxotrophy in a C. glabrata met15Δ strain; however, unlike its Saccharomyces cerevisiae counterpart, the C. glabrata met15Δ strain was unable to grow on exogenous glutathione. This inability to grow on exogenous glutathione was demonstrated to be due to the lack of a functional glutathione transporter, despite the presence of a functional glutathione degradation machinery (the Dug pathway). In the absence of the ability to obtain glutathione from the extracellular medium, we examined and could demonstrate that γ-glutamyl cysteine synthase, the first enzyme of glutathione biosynthesis, was essential in C. glabrata. Further, although γ-glutamyl cysteine synthase has been reported to be non-essential in C. albicans, we report here for what is believed to be the first time that the enzyme is required for survival in human macrophages in vitro, as well as for virulence in a murine model of disseminated candidiasis. The essentiality of γ-glutamyl cysteine synthase in C. glabrata, and its essentiality for virulence in C. albicans, make the enzyme a strong candidate for antifungal development.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.045054-0DOI Listing

Publication Analysis

Top Keywords

glutathione biosynthesis
12
exogenous glutathione
12
γ-glutamyl cysteine
12
cysteine synthase
12
glutathione
11
glabrata
9
pathogens candida
8
candida glabrata
8
candida albicans
8
essential glabrata
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!