The opportunistic pathogen Burkholderia cenocepacia produces the siderophores ornibactin and pyochelin under iron-restricted conditions. Biosynthesis of both siderophores requires the involvement of non-ribosomal peptide synthetases (NRPSs). Using a transposon containing the lacZ reporter gene, two B. cenocepacia mutants were isolated which were deficient in siderophore production. Mutant IW10 was shown to produce normal amounts of ornibactin but only trace amounts of pyochelin, whereas synthesis of both siderophores was abolished in AHA27. Growth of AHA27, but not IW10, was inhibited under iron-restricted conditions. In both mutants, the transposon had integrated into the pobA gene, which encodes a polypeptide exhibiting similarity to the Sfp-type phosphopantetheinyltransferases (PPTases). These enzymes are responsible for activation of NRPSs by the covalent attachment of the 4'-phosphopantetheine (P-pant) moiety of coenzyme A. Previously characterized PPTase genes from other bacteria were shown to efficiently complement both mutants for siderophore production when provided in trans. The B. cenocepacia pobA gene was also able to efficiently complement an Escherichia coli entD mutant for production of the siderophore enterobactin. Using mutant IW10, in which the lacZ gene carried by the transposon is inserted in the same orientation as pobA, it was shown that pobA is not appreciably iron-regulated. Finally, we confirmed that Sfp-type bacterial PPTases can be subdivided into two distinct groups, and we present the amino acid signature sequences which characterize each of these groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.045559-0 | DOI Listing |
J Hazard Mater
September 2024
State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China. Electronic address:
Next-generation sequencing (NGS) has revolutionized taxa identification within contaminant-degrading communities. However, uncovering a core degrading microbiome in diverse polluted environments and understanding its associated microbial interactions remains challenging. In this study, we isolated two distinct microbial consortia, namely MA-S and Cl-G, from separate environmental samples using 1,4-dioxane as a target pollutant.
View Article and Find Full Text PDFMar Pollut Bull
April 2024
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China. Electronic address:
Marine microorganisms have been reported to degrade microplastics. However, the degradation mechanisms are still poorly understood. In this study, a bacterium Roseibium aggregatum ZY-1 was isolated from seawater, which can degrade poly(butylene adipate-co-terephthalate) (PBAT).
View Article and Find Full Text PDFEnviron Microbiol
January 2024
College of Environment and Resources, Xiangtan University, Xiangtan, China.
Cell surface hydrophobicity (CSH) dominates the interactions between rhizobacteria and pollutants at the soil-water interface, which is critical for understanding the dissipation of pollutants in the rhizosphere microzone of rice. Herein, we explored the effects of self-adaptive CSH of Sphingomonas sp. strain PAH02 on the translocation and biotransformation behaviour of cadmium-phenanthrene (Cd-Phe) co-pollutant in rice and rhizosphere microbiome.
View Article and Find Full Text PDFJ Hazard Mater
August 2023
College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China. Electronic address:
The wide distribution of p-hydroxybenzoic acid (PHBA) in the environments has attracted great concerns due to its potential risks to organisms. Bioremediation is considered a green way to remove PHBA from environment. Here, a new PHBA-degrading bacterium Herbaspirillum aquaticum KLS-1was isolated and its PHBA degradation mechanisms were fully evaluated.
View Article and Find Full Text PDFInt Microbiol
May 2023
Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-900, Brazil.
Gallic acid is a powerful antioxidant with multiple therapeutic applications, usually obtained from the acidic hydrolysis of tannins produced by many plants. As this process generates a considerable amount of toxic waste, the use of tannases or tannase-producing microorganisms has become a greener alternative over the last years. However, their high costs still impose some barriers for industrial scalability, requiring solutions that could be both greener and cost-effective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!