Thermodynamic parameters for binding of N-acetylglucosamine (GlcNAc) oligomers to a family 18 chitinase, ChiB of Serratia marcescens, have been determined using isothermal titration calorimetry. Binding studies with oligomers of different lengths showed that binding to subsites -2 and +1 is driven by a favorable enthalpy change, while binding to the two other most important subsites, +2 and +3, is driven by entropy with unfavorable enthalpy. These remarkable unfavorable enthalpy changes are most likely due to favorable enzyme-substrate interactions being offset by unfavorable enthalpic effects of the conformational changes that accompany substrate-binding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2010.10.017DOI Listing

Publication Analysis

Top Keywords

family chitinase
8
binding subsites
8
subsites driven
8
unfavorable enthalpy
8
binding
5
determination substrate
4
substrate binding
4
binding energies
4
energies individual
4
individual subsites
4

Similar Publications

Recombinant expression and characterization of the family 5 cellulase from in BL21-CodonPlus (DE3)-RIPL.

Biochem Biophys Rep

March 2025

Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, Vladivostok, 690922, Russia.

B. velezensis RB. IBE29 is a chitinolytic bacterium originally isolated from agricultural soil of Vietnam.

View Article and Find Full Text PDF

Unfolding and refolding of GH19 chitinase Chi19MK with antifungal activity from Lysobacter sp. MK9-1 at low pH and high temperature.

J Biosci Bioeng

December 2024

Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan. Electronic address:

The GH19 chitinase Chi19MK from Lysobacter sp. MK9-1 inhibits fungal growth. In this study, the thermal stability of Chi19MK was investigated in buffers of different pH.

View Article and Find Full Text PDF

AmChi7, an AmWRKY59 - Activated chitinase, was involved in the adaption to winter climate in Ammopiptanthusmongolicus.

Plant Physiol Biochem

December 2024

Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China. Electronic address:

Chitinases are enzymes that hydrolyze β-1,4-glycosidic bonds in chitin. Previous studies have shown that several chitinases accumulated significantly in A. mongolicus, suggesting that chitinases might participate in the adaptation to winter climate in Ammopiptanthus mongolicus.

View Article and Find Full Text PDF

Systematic analysis and functional characterization of the chitinase gene family in Fagopyrum tataricum under salt stress.

BMC Plant Biol

December 2024

College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.

Background: Chitinases (CHIs) are glycosidases that degrade chitin, playing critical roles in plant responses to both abiotic and biotic stress. Despite their importance, the CHI family's systematic analysis and evolutionary pattern in F. tataricum (Tartary buckwheat) yet to be explored.

View Article and Find Full Text PDF

The L. genus, belonging to the Moraceae family, includes around 850 species that are widely distributed in tropical and subtropical regions around the world; including the Eastern Mediterranean, Asia, Africa, Australia, and a large territory of America. Among the most important species are , , , , , Vahl, , , , and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!