Hepatocyte apoptosis plays an important role in the development of fulminant hepatic failure (FHF). The objective of this study was to investigate the antiapoptotic effect of melatonin in an animal model of FHF of viral origin induced by the rabbit hemorrhagic disease virus (RHDV). Rabbits were experimentally infected with 2 × 10(4) hemagglutination units of a RHDV isolate and received melatonin at two concentrations of 10 and 20 mg/kg at 0, 12, and 24 hr postinfection. RHDV infection induced liver apoptosis, with increased caspase-3 immunoexpression and activity and poly(ADP-ribose)polymerase-1 (PARP-1) proteolysis. These effects were attenuated by melatonin in a concentration-dependent manner. Antiapoptotic effects of melatonin were related to a reduced expression of Bax and cytosolic cytochrome c release, increased expression of Bcl-2 and Bcl-xL, and inhibition of caspase-9 activity. Increased thiobarbituric reactive acid substances concentration and oxidized-to-reduced glutathione ratio were significantly prevented by melatonin administration. Melatonin treatment also resulted in a reduction in caspase-8 activity, tumor necrosis factor receptor-1 (TNF-R1) expression, and phosphorylated Janus kinase (JNK) expression, and increased expression of cellular FLICE-inhibitory protein (c-FLIP). Our findings show that inhibition of apoptotic mechanisms contributes to the beneficial effects of melatonin in rabbits with experimental infection by RHDV and supports a potential hepatoprotective role of melatonin in FHF.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-079X.2010.00807.xDOI Listing

Publication Analysis

Top Keywords

melatonin
9
fulminant hepatic
8
hepatic failure
8
induced rabbit
8
rabbit hemorrhagic
8
hemorrhagic disease
8
disease virus
8
effects melatonin
8
increased expression
8
expression
5

Similar Publications

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.

View Article and Find Full Text PDF

Background: Insulinoma is a neuroendocrine tumor, the main manifestation of which is hypoglycemia. However, the symptoms of hypoglycemia can be non-specific for a long time, especially outside provocative conditions, and quite often the tumor manifests from a life-threatening condition - hypoglycemic coma. In this regard, timely laboratory diagnosis of insulinoma and determination of its aggressive course is one of the priorities in modern researches.

View Article and Find Full Text PDF

Melatonin regulation and the function of the periodontal ligament: Future perspective and challenges.

World J Stem Cells

January 2025

Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia 27100, Italy.

The present article reviews the emerging role of melatonin (MT) and the Hippo-Yes-associated protein signaling pathway in periodontal regeneration, highlighting their potential to delay the aging process of periodontal ligament stem cells (PDLSCs). Oxidative stress and cellular senescence are major obstacles in regenerative therapies, especially in an aging population. MT, a potent antioxidant, restores the morphology, proliferation, and osteogenic differentiation potential of PDLSCs under oxidative stress conditions.

View Article and Find Full Text PDF

Background: This study investigates the protective properties of melatonin in an Parkinson's disease (PD) model, focusing on the underlying mechanisms involving heat shock proteins (HSPs).

Methods: Twelve adult male C57BL/6 mice were randomly divided into four groups (normal control, melatonin control, Parkinson's model, and melatonin treatment; = 3 per group) and housed in a single cage. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was injected intraperitoneally in the Parkinson's model and treatment groups to establish a subacute PD model, while controls received saline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!