Background: Current systemic treatments for cutaneous leishmaniasis are limited by their toxicity, high cost, side effects and the emergence of drug resistance. New approaches, including topical therapies, are urgently needed. Nitric oxide (NO) produced by human and canine macrophages has long been demonstrated to be involved in the intracellular killing of Leishmania.
Objective: This study was designed to determine the clinical responses (healing, or non-healing) and effectiveness of NO plus cryotherapy for the treatment of old world cutaneous leishmaniasis (CL).
Methods: A double-blind, randomized, placebo-controlled clinical trial was performed for the evaluation of therapy with topical nitric oxide 3% and cryotherapy in 63 Iranian patients with CL in the south of Iran.
Results: Thirty of 36 participants (83.3%) had complete improvement in the treatment group as did 20 of 27 (74.1%) from the control group (p = 0.627). Erythema, a burning sensation and irritation occurred in seven participants from the treatment group and one patient from the placebo group (p = 0.063).
Conclusion: This study could not show any more effectiveness from combining a 12-week course of treatment with 3% nitric oxide cream and a once-weekly treatment with cryotherapy in comparison with cryotherapy and placebo in patients with CL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/09546634.2010.495380 | DOI Listing |
Plant Physiol Biochem
January 2025
Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:
Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.
View Article and Find Full Text PDFJ Neurosurg
January 2025
4Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia.
Objective: The pathophysiology of delayed cerebral ischemia (DCI) is not fully elucidated. The lack of accurate diagnostic tools increases the probability of delayed diagnosis and timely treatment. The authors assessed the relationship of 8-iso-prostaglandin F2α (F2-IsoP) and oxidative stress biomarkers, nitric oxide synthase 3 (NOS3) and nicotinamide adenine dinucleotide phosphate (NADPH), with DCI after aneurysmal subarachnoid hemorrhage (aSAH).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Malmö, Sweden.
The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
Macrophage metabolism is closely linked to their phenotype and function, which is why there is growing interest in studying the metabolic reprogramming of macrophages. Bioactive glass (BG) S53P4 is a bioactive material used especially in bone applications. Additionally, BG S53P4 has been shown to affect macrophages, but the mechanisms through which the possible immunomodulatory effects are conveyed remain unclear.
View Article and Find Full Text PDFParasitol Res
January 2025
Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40 Colonia Inalámbrica, Mérida, Yucatán, C.P. 97069, Mexico.
Chagas disease is a chronic infection caused by the protozoan parasite, Trypanosoma cruzi, with limited benefits of the currently available anti-parasitic chemotherapeutic approaches to halt the progression of heart disease. Recombinant TSA-1-C4 and Tc24-C4 proteins have been developed as promising antigen candidates for therapeutic vaccines, leading to propose them in combination as a bivalent recombinant protein strategy. In this study, we evaluated the immunomodulatory effect of the combined TSA-1-C4 and Tc24-C4 recombinant proteins by in vitro assays using murine macrophages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!