Phytate is an antinutritional factor that influences the bioavailability of essential minerals by forming complexes with them and converting them into insoluble salts. To further our understanding of the chemistry of phytate's binding interactions with biologically important metal cations, we determined the stoichiometry, affinity, and thermodynamics of these interactions by isothermal titration calorimetry. The results suggest that phytate has multiple Ca(2+)-binding sites and forms insoluble tricalcium- or tetracalcium-phytate salts over a wide pH range (pH 3.0-9.0). We overexpressed the β-propeller phytase from Hahella chejuensis (HcBPP) that hydrolyzes insoluble Ca(2+)-phytate salts. Structure-based sequence alignments indicated that the active site of HcBPP may contain multiple calcium-binding sites that provide a favorable electrostatic environment for the binding of Ca(2+)-phytate salts. Biochemical and kinetic studies further confirmed that HcBPP preferentially recognizes its substrate and selectively hydrolyzes insoluble Ca(2+)-phytate salts at three phosphate group sites, yielding the final product, myo-inositol 2,4,6-trisphosphate. More importantly, ITC analysis of this final product with several cations revealed that HcBPP efficiently eliminates the ability of phytate to chelate several divalent cations strongly and thereby provides free minerals and phosphate ions as nutrients for the growth of bacteria. Collectively, our results provide significant new insights into the potential application of HcBPP in enhancing the bioavailability and absorption of divalent cations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi1010249 | DOI Listing |
J Food Sci
December 2024
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.
Chloride salts (MgCl and occasionally CaCl) coagulation of the heated soymilks is the key step in manufacturing traditional tofu. In this study, colloidal state diagrams were constructed first, and then the effects of processing parameters, including coagulant concentration, preheating intensity, protein concentration, and coagulation temperature as well as the intrinsic properties (phytate concentration) on the microstructure, protein coagulability, and water holding capacity (WHC) were investigated to gain an overall framework understanding of the Mg and Ca coagulated soymilk process. As the variables changed, the coagulated soymilks displayed one of the following states: colloidal suspension, flocs, weak gel, and strong gel.
View Article and Find Full Text PDFInt J Biol Macromol
May 2017
Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, India.
Phytases are phosphatases which stepwise remove phosphates from phytic acid or its salts. β-Propeller phytase (BPPhy) belongs to a special class of microbial phytases that is regarded as most diverse, isolated and characterized from different microbes, mainly from Bacillus spp. BPPhy class is unique for its Ca-dependent catalytic activity, strict substrate specificity, active at neutral to alkaline pH and high thermostability.
View Article and Find Full Text PDFJ Microbiol Biotechnol
October 2014
Lee Gil Ya Cancer and Diabetes Institute, Gachon University Graduate School of Medicine, Incheon 406-840, Republic of Korea.
Phytate is an antinutritional factor that impacts the bioavailability of essential minerals such as Ca(2+), Mg(2+), Mn(2+), Zn(2+), and Fe(2+) by forming insoluble mineral-phytate salts. These insoluble mineral-phytate salts are hydrolyzed rarely by monogastric animals, because they lack the hydrolyzing phytases and thus excrete the majority of them. The β-propeller phytases (BPPs) hydrolyze these insoluble mineral-phytate salts efficiently.
View Article and Find Full Text PDFBiochemistry
November 2010
Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Korea.
Phytate is an antinutritional factor that influences the bioavailability of essential minerals by forming complexes with them and converting them into insoluble salts. To further our understanding of the chemistry of phytate's binding interactions with biologically important metal cations, we determined the stoichiometry, affinity, and thermodynamics of these interactions by isothermal titration calorimetry. The results suggest that phytate has multiple Ca(2+)-binding sites and forms insoluble tricalcium- or tetracalcium-phytate salts over a wide pH range (pH 3.
View Article and Find Full Text PDFArch Biochem Biophys
August 2005
Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
Phytases catalyze the hydrolysis of phytic acid (InsP6, myo-inositol hexakisphosphate), the most abundant inositol phosphate in cells. In cereal grains and legumes, it constitutes 3-5% of the dry weight of seeds. The inability of humans and monogastric animals such as swine and poultry to absorb complexed InsP6 has led to nutritional and environmental problems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!