The photochemical and thermal stability of the detergent-solubilized blue- and green-absorbing proteorhodpsins, BPR and GPR, respectively, are investigated to determine the viability of these proteins for photonic device applications. Photochemical stability is studied by using pulsed laser excitation and differential UV-vis spectroscopy to assign the photocyclicity. GPR, with a cyclicity of 7 × 10(4) photocycles protein(-1), is 4-5 times more stable than BPR (9 × 10(3) photocycles protein(-1)), but is less stable than native bacteriorhodopsin (9 × 10(5) photocycles protein(-1)) or the 4-keto-bacteriorhodopsin analogue (1 × 10(5) photocycles protein(-1)). The thermal stabilities are assigned by using differential scanning calorimetry and thermal bleaching experiments. Both proteorhodopsins display excellent thermal stability, with melting temperatures above 85 °C, and remain photochemically stable up to 75 °C. The biological relevance of our results is also discussed. The lower cyclicity of BPR is found to be adequate for the long-term biological function of the host organism at ocean depths of 50 m or more.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987714 | PMC |
http://dx.doi.org/10.1021/jp106633w | DOI Listing |
J Phys Chem B
November 2010
Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, USA.
The photochemical and thermal stability of the detergent-solubilized blue- and green-absorbing proteorhodpsins, BPR and GPR, respectively, are investigated to determine the viability of these proteins for photonic device applications. Photochemical stability is studied by using pulsed laser excitation and differential UV-vis spectroscopy to assign the photocyclicity. GPR, with a cyclicity of 7 × 10(4) photocycles protein(-1), is 4-5 times more stable than BPR (9 × 10(3) photocycles protein(-1)), but is less stable than native bacteriorhodopsin (9 × 10(5) photocycles protein(-1)) or the 4-keto-bacteriorhodopsin analogue (1 × 10(5) photocycles protein(-1)).
View Article and Find Full Text PDFPLoS Genet
April 2007
Laboratory of Genetics, The Rockefeller University, New York, New York, United States of America.
Circadian clocks are aligned to the environment via synchronizing signals, or Zeitgebers, such as daily light and temperature cycles, food availability, and social behavior. In this study, we found that genome-wide expression profiles from temperature-entrained flies show a dramatic difference in the presence or absence of a thermocycle. Whereas transcript levels appear to be modified broadly by changes in temperature, there is a specific set of temperature-entrained circadian mRNA profiles that continue to oscillate in constant conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!