It has been shown previously that carbon black (CB), Printex 90 exposure induces cII and lacZ mutants in the FE1-Muta(TM) Mouse lung epithelial cell line and causes oxidatively damaged DNA and the production of reactive oxygen species (ROS). The purpose of this study was to determine the mutation spectrum in the cII gene of Printex 90 exposed cells. Cells exposed to CB have a substantially different mutation spectrum in the cII gene compared with vehicle exposed controls. The mutation spectra differ both in the positions (P < 0.0001) and types of the mutations (P < 0.0001). Exposure to Printex 90 increased the number of single base deletions by 2.3-fold and larger deletions by 1.9-fold. Most single base deletions were within two repetitive sequences in cII, but the large deletions were not. The mechanism behind the large deletions is not yet known. The largest increases in base substitutions were observed in G:C→T:A, G:C→C:G, and A:T→T:A transversion mutations; this is in keeping with a genetic finger print of ROS and is further substantiated by the observations that Printex 90 generates ROS and oxidatively damaged DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/em.20629 | DOI Listing |
ESMO Open
January 2025
Uro-Gynecologic Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy. Electronic address:
Background: Ovarian cancer (OvC) constitutes significant management challenges primarily due to its late-stage diagnosis and the development of resistance to chemotherapy. The standard treatment regimen typically includes carboplatin and paclitaxel, with the addition of poly (ADP-ribose) polymerase inhibitors for patients with high-grade serous ovarian cancer (HGSOC) harboring BRCA1/2 mutations. However, the variability in treatment responses suggests the need to investigate factors beyond BRCA1/2 mutations, such as DNA repair mechanisms and epigenetic alterations.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK.
Background: Male EBP disorder with neurologic defects (MEND syndrome) is an extremely rare disorder with a prevalence of less than 1/1,000,000 individuals worldwide. It is inherited as an X-linked recessive disorder caused by impaired sterol biosynthesis due to nonmosaic hypomorphic EBP variants. MEND syndrome is characterized by variable clinical manifestations including intellectual disability, short stature, scoliosis, digital abnormalities, cataracts, and dermatologic abnormalities.
View Article and Find Full Text PDFClin Genet
January 2025
Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Arthrogryposis multiplex congenita (AMC) is a heterogeneous disorder associated with 1/3000 to 1/5000 live births. We report a consanguineous family with multiple affected members with AMC and identified a recessive mutation in the highly conserved splice donor site, resulting in the mis-splicing of the affected exons. SENP7 is a deSUMOylase that is critical for sarcomere assembly and skeletal muscle contraction by regulating the transcriptional program in the skeletal muscle.
View Article and Find Full Text PDFNat Commun
January 2025
Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
Human cancer cell lines are the mainstay of cancer research. Recent reports showed that highly mutated adult carcinoma cell lines (mainly HeLa and MCF-7) present striking diversity across laboratories and that long-term continuous culturing results in genomic/transcriptomic heterogeneity with strong phenotypical implications. Here, we hypothesize that oligomutated pediatric sarcoma cell lines mainly driven by a fusion transcription factor, such as Ewing sarcoma (EwS), are genetically and phenotypically more stable than the previously investigated adult carcinoma cell lines.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Medical Microbiology, Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic. Electronic address:
Public transport represents a potential site for the transmission of resistant pathogens due to the rapid movement of large numbers of people. This study aimed to investigate the bacterial contamination of frequently touched surfaces in the public transport system operating in the proximity of the biggest Czech hospital during the coronavirus pandemic despite extensive cleaning and disinfection efforts. In June and September 2020, samples from the metro trains, ground transport and stationary objects were collected, enriched and cultured.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!