Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The DerSimonian-Laird confidence interval for the average treatment effect in meta-analysis is widely used in practice when there is heterogeneity between studies. However, it is well known that its coverage probability (the probability that the interval actually includes the true value) can be substantially below the target level of 95 per cent. It can also be very sensitive to publication bias. In this paper, we propose a new confidence interval that has better coverage than the DerSimonian-Laird method, and that is less sensitive to publication bias. The key idea is to note that fixed effects estimates are less sensitive to such biases than random effects estimates, since they put relatively more weight on the larger studies and relatively less weight on the smaller studies. Whereas the DerSimonian-Laird interval is centred on a random effects estimate, we centre our confidence interval on a fixed effects estimate, but allow for heterogeneity by including an assessment of the extra uncertainty induced by the random effects setting. Properties of the resulting confidence interval are studied by simulation and compared with other random effects confidence intervals that have been proposed in the literature. An example is briefly discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/sim.4029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!