X-ray diffraction peak profiles are calculated by the Monte Carlo method for arbitrarily correlated dislocations without making any approximations or simplifications. The arrangement of dislocations in pairs with opposite Burgers vectors provides screening of the long-range strains. Moreover, any screening can be modeled by appropriate distribution of the dislocation pairs. Analytical description of the peak profiles is compared with the Monte Carlo results. Symmetric peaks due to screw dislocations and asymmetric peaks due to edge dislocations are simulated and analyzed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S0108767310033544 | DOI Listing |
Mol Biol Rep
January 2025
Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.
View Article and Find Full Text PDFInorg Chem
January 2025
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
Hydrogen-bonded cocrystals have attracted considerable attention as they allow fine-tuning of properties through the choice of hydrogen-bond donors and acceptors. In this study, triphenylarsine oxide (PhAsO) is introduced as a strong hydrogen-bond acceptor molecule. Due to its higher Lewis basicity compared to triphenylphosphine oxide (PhPO), it acts as a strong hydrogen-bond acceptor, which is demonstrated in six new cocrystals with HO and -di(hydroperoxy)cycloalkanes.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India.
The concept of inert matrix fuel (IMF) has been proposed to utilize the energetic value of Pu and transmute minor actinides in nuclear reactors. In order to offset the initial reactivity of nuclear fuel, gadolinium (Gd) is employed as a burnable poison, owing to its high neutron absorption cross-section. To gain insights into the radiation stability and influence of grain boundaries on irradiation behaviour, 5 mol% Gd-doped ceria samples, sintered at varying temperatures, were subjected to irradiation using 400 Kr ions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI 38000 Grenoble, France.
An original approach to characterize electrochemical interfaces at the atomic level, a challenging topic toward the understanding of electrochemical reactivity, is reported. We employed surface resonant X-ray diffraction experiments combined with their simulation using first-principle density functional theory calculations and were thus able to determine the molecular and electronic structures of the partially ionic layer facing the electrode surface, as well as the charge distribution in the surface metal layers. Pt(111) in an acidic medium at an applied potential excluding specific adsorption was studied.
View Article and Find Full Text PDFRSC Adv
January 2025
Centre for Nano Bio Polymer Science and Technology, Department of Physics, St. Thomas College Palai Kerala 686574 India +919446126926.
We report a green approach to prepare carbon dots (CDs) with fresh tomatoes as carbon sources and amino acids as dopants (ACDs) by a microwave assisted method. The synthesised CDs were analysed by UV-visible absorption spectroscopy, photoluminescence spectroscopy, high resolution transmission electron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photo electron spectroscopy. An MTT assay was used to evaluate the cytotoxicity of CDs toward L929 cells and found that CDs exhibit low cytotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!