A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A within-trial measure of the stop signal reaction time in a head-unrestrained oculomotor countermanding task. | LitMetric

A within-trial measure of the stop signal reaction time in a head-unrestrained oculomotor countermanding task.

J Neurophysiol

CIHR Group in Action and Perception, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.

Published: December 2010

The countermanding (or stop-signal) task, which requires the cancellation of an impending response on the infrequent presentation of a stop signal, enables study of the contextual control of movement generation and suppression. Here we present a novel and empirical measure of the time needed to cancel an impending gaze shift by recording neck muscle activity during a head-unrestrained oculomotor countermanding paradigm. On a subset of stop signal trials, subjects generated small head movements toward a target even though gaze remained stable due to a compensatory vestibular-ocular reflex. On such trials, we observed a burst of antagonist neck muscle activity during the small head-only error. Such antagonist neck muscle activity served as an active braking pulse as its magnitude scaled with the kinematics of the head-only error. This activity was selective for trials in which the head was arrested in mid-flight and did not appear on trials without a stop signal, on noncancelled stop signal trials when the gaze shift was completed, or on stop signal trials without head motion. Importantly, the timing of this antagonist activity related best to the onset of the stop signal (lagging it by ∼180 ms), and strongly correlated with behavioral estimates of the time needed to cancel a movement (the stop signal reaction time). These results are consistent with the notion that such selective antagonist neck muscle activity arises as a peripheral expression of the oculomotor stop process that successfully cancelled the gaze shift. Studying movement cancellation within nested systems like the head-unrestrained gaze shifting system offers a unique opportunity for investigating underlying neural mechanisms as the overall goal (i.e., to cancel a gaze shift) can be achieved despite motion of other components; on such individual trials, the oculomotor stop process is expressed as an active braking pulse.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00495.2010DOI Listing

Publication Analysis

Top Keywords

gaze shift
16
neck muscle
16
muscle activity
16
signal trials
12
antagonist neck
12
signal
8
signal reaction
8
reaction time
8
head-unrestrained oculomotor
8
oculomotor countermanding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!