PD-(D/E)XK nucleases, initially represented by only Type II restriction enzymes, now comprise a large and extremely diverse superfamily of proteins. They participate in many different nucleic acids transactions including DNA degradation, recombination, repair and RNA processing. Different PD-(D/E)XK families, although sharing a structurally conserved core, typically display little or no detectable sequence similarity except for the active site motifs. This makes the identification of new superfamily members using standard homology search techniques challenging. To tackle this problem, we developed a method for the detection of PD-(D/E)XK families based on the binary classification of profile-profile alignments using support vector machines (SVMs). Using a number of both superfamily-specific and general features, SVMs were trained to identify true positive alignments of PD-(D/E)XK representatives. With this method we identified several PFAM families of uncharacterized proteins as putative new members of the PD-(D/E)XK superfamily. In addition, we assigned several unclassified restriction enzymes to the PD-(D/E)XK type. Results show that the new method is able to make confident assignments even for alignments that have statistically insignificant scores. We also implemented the method as a freely accessible web server at http://www.ibt.lt/bioinformatics/software/pdexk/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045609 | PMC |
http://dx.doi.org/10.1093/nar/gkq958 | DOI Listing |
Nucleic Acids Res
February 2020
Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
HhaI, a Type II restriction endonuclease, recognizes the symmetric sequence 5'-GCG↓C-3' in duplex DNA and cleaves ('↓') to produce fragments with 2-base, 3'-overhangs. We determined the structure of HhaI in complex with cognate DNA at an ultra-high atomic resolution of 1.0 Å.
View Article and Find Full Text PDFNucleic Acids Res
December 2004
Microbiology and Cell Biology Department, Indian Institute of Science, Bangalore 560 012, India.
The restriction endonuclease (REase) R.KpnI is an orthodox Type IIP enzyme, which binds to DNA in the absence of metal ions and cleaves the DNA sequence 5'-GGTAC--C-3' in the presence of Mg2+ as shown generating 3' four base overhangs. Bioinformatics analysis reveals that R.
View Article and Find Full Text PDFBiochemistry
April 2002
Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
McrBC is a unique restriction enzyme which binds specifically to the bipartite recognition sequence R(m)CN( approximately )(30)(-)( approximately )(2000)R(m)C and in the presence of GTP translocates the DNA and cleaves both strands at multiple positions within the two R(m)C "half-sites". It is known that McrBC is composed of two subunits: McrB which binds and hydrolyzes GTP and specifically interacts with DNA and McrC whose function is not clear but which has been suspected to harbor the catalytic center for DNA cleavage. A multiple-sequence alignment of the amino acid sequence of Escherichia coli McrC and of six presumably homologous open reading frames from various bacterial species shows that a sequence motif found in many restriction enzymes, but also in other nucleases, the PD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!