Characterization of 7- and 19-month-old Tg2576 mice using multimodal in vivo imaging: limitations as a translatable model of Alzheimer's disease.

Neurobiol Aging

Experimental Imaging/Advanced Technology, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.

Published: May 2012

With 90% of neuroscience clinical trials failing to see efficacy, there is a clear need for the development of disease biomarkers that can improve the ability to predict human Alzheimer's disease (AD) trial outcomes from animal studies. Several lines of evidence, including genetic susceptibility and disease studies, suggest the utility of fluorodeoxyglucose positron emission tomography (FDG-PET) as a potential biomarker with congruency between humans and animal models. For example, early in AD, patients present with decreased glucose metabolism in the entorhinal cortex and several regions of the brain associated with disease pathology and cognitive decline. While several of the commonly used AD mouse models fail to show all the hallmarks of the disease or the limbic to cortical trajectory, there has not been a systematic evaluation of imaging-derived biomarkers across animal models of AD, contrary to what has been achieved in recent years in the Alzheimer's Disease Neuroimaging Initiative (ADNI) (Miller, 2009). If animal AD models were found to mimic endpoints that correlate with the disease onset, progression, and relapse, then the identification of such markers in animal models could afford the field a translational tool to help bridge the preclinical-clinical gap. Using a combination of FDG-PET and functional magnetic resonance imaging (fMRI), we examined the Tg2576 mouse for global and regional measures of brain glucose metabolism at 7 and 19 months of age. In experiment 1 we observed that at younger ages, when some plaque burden and cognitive deficits have been reported, Tg2576 mice showed hypermetabolism as assessed with FDG-PET. This hypermetabolism decreased with age to levels similar to wild type (WT) counterparts such that the 19-month-old transgenic (Tg) mice did not differ from age matched WTs. In experiment 2, using cerebral blood volume (CBV) fMRI, we demonstrated that the hypermetabolism observed in Tg mice at 7 months could not be explained by changes in hemodynamic parameters as no differences were observed when compared with WTs. Taken together, these data identify brain hypermetabolism in Tg2576 mice which cannot be accounted for by changes in vascular compliance. Instead, the hypermetabolism may reflect a neuronal compensatory mechanism. Our data are discussed in the context of disease biomarker identification and target validation, suggesting little or no utility for translational based studies using Tg2576 mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2010.08.005DOI Listing

Publication Analysis

Top Keywords

tg2576 mice
16
animal models
16
alzheimer's disease
12
disease
9
glucose metabolism
8
mice
6
tg2576
5
animal
5
models
5
hypermetabolism
5

Similar Publications

Background: Recent studies have identified hearing loss (HL) as a primary risk factor for Alzheimer's disease (AD) onset. However, the mechanisms linking HL to AD are not fully understood. This study explored the effects of drug-induced hearing loss (DIHL) on the expression of proteins associated with AD progression in mouse models.

View Article and Find Full Text PDF

Gut microbiota dysbiosis in Alzheimer's disease (AD): Insights from human clinical studies and the mouse AD models.

Physiol Behav

December 2024

Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA; College of Agriculture, Food, and Natural Resources, Prairie View A&M University, Prairie View, TX 77446, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, GA, USA; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA. Electronic address:

Alzheimer's Disease (AD) is a debilitating neurocognitive disorder with an unclear underlying mechanism. Recent studies have implicated gut microbiota dysbiosis with the onset and progression of AD. The connection between gut microbiota and AD can significantly affect the prevention and treatment of AD patients.

View Article and Find Full Text PDF
Article Synopsis
  • Endocannabinoids show promise in reducing neuroinflammation related to Alzheimer's disease (AD) by potentially rebalancing autophagic mechanisms.
  • Researchers administered URB597, an FAAH inhibitor that increases anandamide levels, to both microglial cultures and Tg2576 transgenic mice.
  • The treatment led to a shift in microglia toward an anti-inflammatory state, reduced amyloid plaque formation, and restored key autophagy markers, indicating a possible therapeutic approach for AD.
View Article and Find Full Text PDF

Extra-cerebral manifestations of Alzheimer's disease (AD) develop in the retina, which is, therefore, considered a "window to the brain". Recent studies demonstrated the dysregulation of the endocannabinoid (eCB) system (ECS) in AD brain. Here, we explored the possible alterations of ECS and the onset of gliosis in the retina of AD-like mice.

View Article and Find Full Text PDF

mCLAS adaptively rescues disease-specific sleep and wake phenotypes in neurodegeneration.

Sleep Med

December 2024

Department of Neurology, University Hospital Zurich (USZ), Switzerland; Neuroscience Center Zurich (ZNZ), Switzerland; Center of Competence Sleep and Health, University of Zurich (UZH), Switzerland. Electronic address:

Article Synopsis
  • Sleep changes are common in Alzheimer's and Parkinson's diseases, affecting brain health during deep sleep.
  • A new method called mouse closed-loop auditory stimulation (mCLAS) has been developed to enhance slow-wave activity during deep sleep in models of these diseases.
  • Initial findings show that mCLAS can improve sleep patterns in mice, with different effects seen in Alzheimer's versus Parkinson's models, suggesting potential for future sleep-based therapies in neurodegenerative conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!