Versatile polymer microspheres for injection therapy: aspects of fluoroscopic traceability and biofunctionalization.

Biomacromolecules

Department of Biomedical Engineering/Biomaterials Sciences, Faculty of Health, Medicine, and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.

Published: December 2010

Synthesis and characterization of a series of novel microspheres featuring (i) radiopacity (i.e., clear fluoroscopic traceability) and (ii) an outer surface exposing aldehyde groups are reported. The aldehydes allowed us to tether proteins onto the particles' surface under mild conditions, under which the protein conformation and, hence, structural motifs for biorecognition are preserved. Essential monomer building blocks were (i) 4-iodobenzoyl-2-oxo-ethylmethacrylate (4-IEMA) for radiopacity and (ii) propenal for surface tethering of proteins. The particles demonstrated good X-ray visibility and cytocompatibility. Procedures to couple proteins onto the surface were optimized using fluorescent bovine serum albumin (FITC-BSA) or collagen (FITC-collagen). Furthermore, radiopaque microparticles with unlabeled bovine collagen type I were produced. The presence of immobilized collagen was verified with narrow-scan X-ray photoelectron spectroscopy. Fibroblasts readily adhere to and grow on the collagen-modified surfaces, whereas this was much less the case for the unmodified controls. The results led us to suggest that immobilized nondenatured collagen may transform filler particles from passive space-occupying objects to particles that cross-talk with surrounding tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm1010273DOI Listing

Publication Analysis

Top Keywords

fluoroscopic traceability
8
versatile polymer
4
polymer microspheres
4
microspheres injection
4
injection therapy
4
therapy aspects
4
aspects fluoroscopic
4
traceability biofunctionalization
4
biofunctionalization synthesis
4
synthesis characterization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!