Hydrophobic and volatile chemicals have proven to be difficult to dose in cell assays. Cosolvents are often needed to dissolve these chemicals in cell culture medium. Moreover, the free concentration of these chemicals in culture medium may diminish over time due to metabolism, evaporation, and nonspecific binding to well plate surfaces and serum constituents. The aim of this study was to develop a partition-controlled dosing system to maintain constant concentrations of benzo(a)pyrene, 1,2-dichlorobenzene, and 1,2,4-trichlorobenzene in an ethoxyresorufin-O-deethylase (EROD) assay and a cytotoxicity assay with the rainbow trout (Oncorhynchus mykiss) cell lines RTL-W1 and RTgill-W1. Polydimethylsiloxane (PDMS) sheets were loaded with test chemicals in a spiked methanol/water solution and placed in the wells, filled with culture medium, of a 24-well culture plate. Cells were grown on inserts and were subsequently added to the wells with the PDMS sheets. The system reached equilibrium within 24 h, even for the very hydrophobic chemical benzo(a)pyrene. The reservoir of test chemical in PDMS was large enough to compensate for the loss of >95% of the test chemical from the culture medium. The PDMS sheets maintained medium concentrations constant for >72 h. Nominal median effect concentrations (EC(50)) were 1.3-7.0 times lower in the partition-controlled dosing systems than in conventional assays spiked using dimethyl sulfoxide (DMSO) as a carrier solvent, thus indicating that the apparent sensitivity of the bioassay increased when controlled and constant exposure conditions could be assured. The EC(50) values of the test chemicals based on free concentrations were estimated in the partition-controlled dosing systems using measured PDMS-bare culture medium partition coefficients. Results indicated that 61, 70, and 99.8% of 1,2-diclorobenzene, 1,2,4-trichlorobenzene, and benzo(a)pyrene were bound to serum constituents in the culture medium.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx1002595DOI Listing

Publication Analysis

Top Keywords

culture medium
24
partition-controlled dosing
16
pdms sheets
12
dosing system
8
cell assays
8
serum constituents
8
test chemicals
8
test chemical
8
dosing systems
8
culture
7

Similar Publications

Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.

View Article and Find Full Text PDF

Insights on the role of cryoprotectants in enhancing the properties of bioinks required for cryobioprinting of biological constructs.

J Mater Sci Mater Med

January 2025

Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, 613401, India.

Preservation and long-term storage of readily available cell-laden tissue-engineered products are major challenges in expanding their applications in healthcare. In recent years, there has been increasing interest in the development of off-the-shelf tissue-engineered products using the cryobioprinting approach. Here, bioinks are incorporated with cryoprotective agents (CPAs) to allow the fabrication of cryopreservable tissue constructs.

View Article and Find Full Text PDF

Elevated blood levels of estrogens are associated with poor prognosis in estrogen receptor-positive (ER+) breast cancers, but the relationship between circulating blood hormone levels and intracellular hormone concentrations are not well characterized. We observed that MCF-7 cells treated acutely with 17β-estradiol (E2) retain a substantial amount of the hormone even upon removal of the hormone from the culture medium. Moreover, global patterns of E2-dependent gene expression are sustained for hours after acute E2 treatment and hormone removal.

View Article and Find Full Text PDF

Assembly and Quantification of Co-Cultures Combining Heterotrophic Yeast with Phototrophic Sugar-Secreting Cyanobacteria.

J Vis Exp

December 2024

Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf; Department of Biochemistry and Molecular Biology, Michigan State University.

With the increasing demand for sustainable biotechnologies, mixed consortia containing a phototrophic microbe and heterotrophic partner species are being explored as a method for solar-driven bioproduction. One approach involves the use of CO2-fixing cyanobacteria that secrete organic carbon to support the metabolism of a co-cultivated heterotroph, which in turn transforms the carbon into higher-value goods or services. In this protocol, a technical description to assist the experimentalist in the establishment of a co-culture combining a sucrose-secreting cyanobacterial strain with a fungal partner(s), as represented by model yeast species, is provided.

View Article and Find Full Text PDF

Establishing a Three-Dimensional Coculture Module of Epithelial Cells Using Nanofibrous Membranes.

J Vis Exp

December 2024

Department of Pharmacology, School of Medicine, Ajou University; 3D Immune System Imaging Core Center, Ajou University;

Technical hurdles in a culture of epithelial cells include dedifferentiation and loss of function. Biomimetic three-dimensional (3D) cell culture methods can enhance cell culture efficiency. This study introduces an advanced two-layered culture system intended to cultivate epithelial cells as tissue-like layers with the culture of fibroblasts within a 3D environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!