Unlabelled: Optical imaging is a cornerstone of modern oncologic research. The aim of this study is to determine the value of a new tool to enhance bioluminescent and fluorescent sensitivity for facilitating very-low-level signal detection in vivo.
Experimental: For bioluminescent imaging experiments, a luciferase expressing breast cancer cell line with metastatic phenotype was implanted orthotopically into the mammary fat pad of mice. For fluorescent imaging experiments, near-infrared (NIR) nanoparticles were injected intratumorally and subcutaneously into mice. Images were compared in mice with and without application of the 'Gator' Mouse Suit (GMS).
Results: The GMS was associated with early detection and quantification of metastatic bioluminescent very-low-level signal not possible with conventional imaging strategies. Similarly, NIR nanoparticles that were undetectable in locations beyond the primary injection site could be visualized and their very-low-level signal quantifiable with the aid of the GMS.
Conclusion: The GMS is a device which has tremendous potential for facilitating the development of bioluminescent models and fluorescent nanomaterials for translational oncologic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bio.1241 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!