The phosphorylation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) is thought to play an important role in cell regulation and signal transduction. However, the relationship between hnRNP K phosphorylation and cellular events has only been indirectly examined, and the phosphorylated forms of endogenous hnRNP K have not been biochemically characterized in detail. In this study, we extensively examined the phosphorylated forms of endogenous hnRNP K by direct protein-chemical characterization using phosphate-affinity electrophoresis followed by immunoblotting and MS. Phosphate-affinity electrophoresis enabled us to sensitively detect and separate the phosphorylated forms of hnRNP K. When we used 2-DE with phosphate-affinity SDS-PAGE in the second dimension, the nuclear fraction contained more than 20 spots of endogenous hnRNP K on the 2-D map. We determined that the multiple forms of hnRNP K were produced mainly by alternative splicing of the single hnRNP K gene and phosphorylation of Ser116 and/or Ser284. Furthermore, the subcellular localization of these proteins revealed by the 2-D gel correlated with their phosphorylation states and alternative splicing patterns. The results also indicated that the multiple forms of hnRNP K were differentially modulated in response to external stimulation with bacterial lipopolysaccharide or serum.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.201000349DOI Listing

Publication Analysis

Top Keywords

phosphate-affinity electrophoresis
12
phosphorylated forms
12
endogenous hnrnp
12
forms hnrnp
12
hnrnp
9
heterogeneous nuclear
8
nuclear ribonucleoprotein
8
examined phosphorylated
8
forms endogenous
8
multiple forms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!