Molecules can enter the nucleus by passive diffusion or active transport mechanisms, depending on their size. Small molecules up to size of 50-60 kDa or less than 10 nm in diameter can diffuse passively through the nuclear pore complex (NPC), while most proteins are transported by energy driven transport mechanisms. Active transport of viral proteins is mediated by nuclear localization signals (NLS), which were first identified in Simian Virus 40 large T antigen and had subsequently been identified in a large number of viral proteins. Usually they contain short stretches of lysine or arginine residues. These signals are recognized by the importin super-family (importin α and β) proteins that mediate the transport across the nuclear envelope through Ran-GTP. In contrast, only one class of the leucine-rich nuclear export signal (NES) on viral proteins is known at present. Chromosome region maintenance 1 (CRM1) protein mediates nuclear export of hundreds of viral proteins through the recognition of the leucine-rich NES.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227907 | PMC |
http://dx.doi.org/10.1007/s12250-010-3099-z | DOI Listing |
PLoS One
January 2025
Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
The ongoing increase in the prevalence and mutation rate of the influenza virus remains a critical global health issue. A promising strategy for antiviral drug development involves targeting the RNA-dependent RNA polymerase, specifically the PB2-cap binding domain of Influenza A H5N1. This study employs an in-silico approach to inhibit this domain, crucial for viral replication, using potential inhibitors derived from marine bacterial compounds.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
The area of wound healing presents a promising field of interest for clinicians as well as the scientific community. A major concern for physicians is the rising number of elderly people suffering from diabetes, leprosy, tuberculosis and the associated chronic wounds. While traditional therapies target basic wound care, innovative strategies that accelerate wound healing are needed.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
Although much has been learned about the entry mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many details of the entry mechanisms of seasonal human coronaviruses (HCoVs) remain less well understood. In the present study, we used 293T cell lines stably expressing angiotensin converting enzyme (ACE2), aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2), which support high-level transduction of lentiviral pseudoviruses bearing spike proteins of seasonal HCoVs, HCoV-NL63, -229E, or -HKU1, respectively, to compare spike processing and virus entry pathways among these viruses. Our results showed that the entry of HCoV-NL63, -229E, and -HKU1 pseudoviruses into cells is sensitive to endosomal acidification inhibitors (chloroquine and NHCl), indicating entry via the endocytosis route.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
In the last few years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been the cause of a worldwide pandemic, highlighting the need for novel antiviral agents. The main protease (M) of SARS-CoV-2 was immediately identified as a crucial enzyme for viral replication and has been validated as a drug target. Here, we present the design and synthesis of peptidomimetic M covalent inhibitors characterized by quinoline-based P moieties.
View Article and Find Full Text PDFVet Ital
January 2025
Grupo GINVER, Facultad de Medicina Veterinaria, Corporación Universitaria Remington, Medellín, 050010.
The bovine leukemia virus (BLV) is a pathogen of high importance for the dairy industry. Currently, twelve genotypes have been described worldwide with different pathogenicity and virulence, so it is critical to evaluate the circulating genotypes in each country/region to associate this information with risk situations. The aim of this work was to perform a phylogenetic and mutational analysis of the BLV tax gene in cows that belong to specialized dairies in the Department of Antioquia, Colombia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!