Angiotensin II receptor type 1 (AT1) activation leads to vasoconstriction and type 2 receptor (AT2) leads to vasodilation. Atrial natriuretic peptide (ANP) antagonizes the effects of AT1. In human and murine pregnancies, uterine natural killer (uNK) cells closely associate with decidual blood vessels. Protein localization of AT1, AT2, and ANP to mouse uNK cells was examined between gestation days (gds) 6 and 12, the interval of uNK cell expansion. Percentages of uNK cells expressing AT1 or AT2 changed between gd6 and gd10. Atrial natriuretic peptide did not localize to uNK cells at gd6 or 8, but did colocalize to uNK cells at gd10 and 12, times immediately after spiral arterial modification. This is the first report of AT1, AT2, and ANP expression in uterine immune cells. Expression of these molecules suggests that uNK cells have the potential to contribute to the changes in blood pressure that occur between days 5 and 12 of pregnancy in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1933719110385136DOI Listing

Publication Analysis

Top Keywords

unk cells
24
at1 at2
16
at2 anp
12
uterine natural
8
natural killer
8
cells
8
atrial natriuretic
8
natriuretic peptide
8
unk
7
at1
6

Similar Publications

Background: Uterine endometrial natural killer (uNK) cells represent major leukocytes in the mid-secretory phase of the cell cycle, and their number is further increased during early pregnancy. The activating and inhibitory receptors expressed on their surface mediate various functions of uNK cells, such as cytotoxicity, cytokine production, spiral artery remodeling, and self-recognition.

Methods: This study reviewed the most recent information (PubMed database, 175 articles included) regarding the activating and inhibitory receptors on uNK cells in human females with healthy pregnancies and the evidence indicating their significance in various reproductive failures.

View Article and Find Full Text PDF

Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment.

View Article and Find Full Text PDF

The murine uterus contains three subsets of innate lymphoid cells (ILCs). Innate lymphoid cell type 1 (ILC1) and conventional natural killer (cNK) cells seed the uterus before puberty. Tissue-resident NK (trNK) cells emerge at puberty and vary in number during the estrous cycle.

View Article and Find Full Text PDF
Article Synopsis
  • Regulatory T (Treg) cells are crucial for maintaining immune tolerance during pregnancy, ensuring that the mother’s body accepts the developing fetus and placenta.
  • In a study using a specific mouse model, researchers found that depleting Treg cells early in pregnancy led to problems with the remodeling of uterine arteries, reduced natural killer (uNK) cell numbers, and resulted in fetal loss and growth restriction.
  • By transferring Treg cells from healthy donors, the negative effects on vascular function and fetal health were mitigated, highlighting the important role Treg cells play in adapting the uterine environment for a successful pregnancy and their connection to issues like preeclampsia.
View Article and Find Full Text PDF

Exploring the management of recurrent angioedema caused by different mechanisms.

Curr Opin Allergy Clin Immunol

February 2025

Department of Medicine and Medical Specialties, A. Cardarelli Hospital, Naples, Italy.

Purpose Of Review: We aim to explore the most recent insights into the pathogenesis of recurrent angioedema caused by different mechanisms and then focus on the management and treatment approaches available.

Recent Findings: The recently developed DANCE consensus classification identifies five types of angioedema: mast cell-mediated (AE-MC), bradykinin-mediated, because of intrinsic vascular endothelium dysfunction (AE-VE), drug-induced (AE-DI), and due to unknown mechanisms (AE-UNK). These subtypes require different management with treatment choices targeting the main pathogenetic pathways involved in each form.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!