AI Article Synopsis

  • The study aimed to find the best CT detector configuration, patient size, and image noise levels for achieving good quality 80-kV images in abdominal dual-energy CT scans.
  • Researchers reviewed scans from 116 patients, assessing image quality and artifacts at different abdominal levels using established grading scales.
  • Results showed that a 14 × 1.2-mm detector produced better image quality compared to a 64 × 0.6-mm configuration, particularly for the kidneys and ileum, suggesting it is effective for a significant portion of patients.

Article Abstract

Purpose: To determine the computed tomographic (CT) detector configuration, patient size, and image noise limitations that will result in acceptable image quality of 80-kV images obtained at abdominal dual-energy CT.

Materials And Methods: The Institutional Review Board approved this HIPAA-compliant retrospective study from archival material from patients consenting to the use of medical records for research purposes. A retrospective review of contrast material-enhanced abdominal dual-energy CT scans in 116 consecutive patients was performed. Three gastrointestinal radiologists noted detector configuration and graded image quality and artifacts at specified levels-midliver, midpancreas, midkidneys, and terminal ileum-by using two five-point scales. In addition, an organ-specific enhancement-to-noise ratio and background noise were measured in each patient. Patient size was measured by using the longest linear dimension at the level of interest, weight, lean body weight, body mass index, and body surface area. Detector configuration, patient sizes, and image noise levels that resulted in unacceptable image quality and artifact rankings (score of 4 or higher) were determined by using multivariate logistic regression.

Results: A 14 × 1.2-mm detector configuration resulted in fewer images with unacceptable quality than did the 64 × 0.6-mm configuration at all anatomic levels (P = .004, .01, and .02 for liver, pancreas, and kidneys, respectively). Image acceptability for the kidneys and ileum was significantly greater than that for the liver for all readers and detector configurations (P < .001). For the 14 × 1.2-mm detector configuration, patient longest linear dimensions yielding acceptable image quality across readers ranged from 34.9 to 35.8 cm at the four anatomic levels.

Conclusion: An 80-kV abdominal CT can be performed with appropriate diagnostic quality in a substantial percentage of the population, but it is not recommended beyond the described patient size for each anatomic level. The 14 × 1.2-mm detector configuration should be preferred.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.10092016DOI Listing

Publication Analysis

Top Keywords

detector configuration
24
image quality
20
patient size
16
abdominal dual-energy
12
image noise
12
configuration patient
12
12-mm detector
12
image
9
size image
8
acceptable image
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!