A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diallyl trisulfide inhibits activation of signal transducer and activator of transcription 3 in prostate cancer cells in culture and in vivo. | LitMetric

Diallyl trisulfide inhibits activation of signal transducer and activator of transcription 3 in prostate cancer cells in culture and in vivo.

Cancer Prev Res (Phila)

Department of Pharmacology and Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.

Published: November 2010

Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor implicated in prostate carcinogenesis. The present study shows that diallyl trisulfide (DATS), a promising cancer-chemopreventive constituent of processed garlic, inhibits phosphorylation of STAT3 in prostate cancer cells in culture and in vivo. Exposure of DU145 and LNCaP human prostate cancer cells to growth-suppressive and pharmacologically relevant concentrations of DATS (20 and 40 μmol/L) resulted in suppression of constitutive (DU145) as well as interleukin-6 (IL-6)-induced (LNCaP) phosphorylation of STAT3 (Tyr(705)), which correlated with inhibition of Janus-activated kinase 2 phosphorylation. Constitutive and/or IL-6-induced nuclear translocation of pSTAT3 and STAT3 dimerization was also markedly inhibited on treatment with DATS in both cell lines. Inhibition of prostate cancer development in transgenic adenocarcinoma of mouse prostate mice by gavage of DATS correlated with a visible decrease in the levels of pSTAT3. Interestingly, the IL-6-mediated activation of STAT3 largely failed to confer protection against proapoptotic response to DATS in both cells. Likewise, DATS-mediated inhibition of cell migration was either not affected or minimally reversed by IL-6 treatment or ectopic expression of constitutively active STAT3. In conclusion, the present study indicates that DATS treatment suppresses STAT3 phosphorylation in prostate cancer cells in culture and in vivo, but activation of this oncogenic transcription factor is largely dispensable for cellular responses to DATS. Ability of DATS to overcome STAT3 activation is a therapeutic advantage for this chemopreventive agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988081PMC
http://dx.doi.org/10.1158/1940-6207.CAPR-10-0123DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
cancer cells
16
cells culture
12
culture vivo
12
diallyl trisulfide
8
signal transducer
8
transducer activator
8
activator transcription
8
stat3
8
oncogenic transcription
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!