RAP80 acts independently of BRCA1 in repair of topoisomerase II poison-induced DNA damage.

Cancer Res

Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshidakonoe, Sakyo-ku, Kyoto, Japan.

Published: November 2010

The tumor suppressor BRCA1 functions in DNA homologous recombination, and mutations in BRCA1 increase the risk of breast and ovarian cancers. RAP80 is a component of BRCA1-containing complexes that is required for recruitment of BRCA1 to sites of DNA damage. To evaluate the role of RAP80 in DNA damage repair, we genetically disrupted both RAP80 alleles in the recombinogenic avian DT40 cell line. The resulting RAP80(-/-) cells were proficient at homologous recombination and nonhomologous end-joining (NHEJ), but were specifically sensitized to the topoisomerase II inhibitor etoposide. Notably, doubly mutant RAP80(-/-)BRCA1(-/-) cells were more sensitive to etoposide than were BRCA1(-/-) cells, revealing that RAP80 performs a BRCA1-independent repair function. Moreover, jointly impairing the function of CtIP, a distinct BRCA1 effector protein, rendered RAP80(-/-) cells more sensitive to etoposide compared with singly mutant cells, again illustrating a BRCA1-independent role of RAP80. Based on our findings, we propose that RAP80 exerts a specific function in repair of the topoisomerase-cleavage complex, such as the removal of covalently bound polypeptides from double-strand break ends independently of BRCA1.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-10-0267DOI Listing

Publication Analysis

Top Keywords

dna damage
12
independently brca1
8
homologous recombination
8
role rap80
8
rap80-/- cells
8
cells sensitive
8
sensitive etoposide
8
rap80
7
brca1
6
cells
5

Similar Publications

In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.

View Article and Find Full Text PDF

Ginkgolide B regulates apoptosis, oxidative stress, and mitochondrial dysfunction in MPP-induced SK-N-SH cells by targeting HDAC4/JNK pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Huai'an Hospital Affiliated to Yangzhou University, The Fifth People's Hospital of Huai'an), 1 Huaihe East Road, Huaiyin District, Huai'an City, Jiangsu Province, China.

Ginkgolide B (GB) is a bioactive constituent found in Ginkgo biloba leaves that has been long recognized as a protective agent against many neurological disorders. Our study aimed to examine the effect of GB in an in vitro Parkinson's disease (PD) model and to investigate its neuroprotective mechanism as a primary objective. SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium (MPP) to act as a PD-like model of neuronal damage.

View Article and Find Full Text PDF

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.

View Article and Find Full Text PDF

Regulation of pattern recognition receptor signaling by palmitoylation.

iScience

February 2025

Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Pattern recognition receptors (PRRs), consisting of Toll-like receptors, RIG-I-like receptors, cytosolic DNA sensors, and NOD-like receptors, sense exogenous pathogenic molecules and endogenous damage signals to maintain physiological homeostasis. Upon activation, PRRs stimulate the sensitization of nuclear factor κB, mitogen-activated protein kinase, TANK-binding kinase 1-interferon (IFN) regulatory factor, and inflammasome signaling pathways to produce inflammatory factors and IFNs to activate Janus kinase/signal transducer and activator of transcription signaling pathways, resulting in anti-infection, antitumor, and other specific immune responses. Palmitoylation is a crucial type of post-translational modification that reversibly alters the localization, stability, and biological activity of target molecules.

View Article and Find Full Text PDF

Background: We present a systematic review and meta-analysis of randomized clinical trials (RCTs) with PARPi either as monotherapy or in combination with an androgen receptor-targeted agent (ARTA) in first- and second-line settings.

Methods: Primary endpoints are radiographic progression free survival (rPFS) and overall survival (OS) in patients with mCRPC and either unselected, homologous recombination repair wild-type (HRR-), homologous recombination repair mutated (HRR+) or with BRCA1, BRCA2, or ATM mutation. The effect of PARPi + ARTA in the second-line setting is also explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!