Thermal fluctuation spectroscopy of DNA thermal denaturation.

Biophys J

Department of Physics, Indian Institute of Science, Bangalore, India.

Published: October 2010

We have developed the technique of thermal fluctuation spectroscopy to measure the thermal fluctuations in a system. This technique is particularly useful to study the denaturation dynamics of biomolecules like DNA. Here we present a study of the thermal fluctuations during the thermal denaturation (or melting) of double-stranded DNA. We find that the thermal denaturation of heteropolymeric DNA is accompanied by large, non-Gaussian thermal fluctuations. The thermal fluctuations show a two-peak structure as a function of temperature. Calculations of enthalpy exchanged show that the first peak comes from the denaturation of AT rich regions and the second peak from denaturation of GC rich regions. The large fluctuations are almost absent in homopolymeric DNA. We suggest that bubble formation and cooperative opening and closing dynamics of basepairs causes the additional fluctuation at the first peak and a large cooperative transition from a partially molten DNA to a completely denatured state causes the additional fluctuation at the second peak.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955503PMC
http://dx.doi.org/10.1016/j.bpj.2010.07.048DOI Listing

Publication Analysis

Top Keywords

thermal fluctuations
16
thermal denaturation
12
thermal
9
thermal fluctuation
8
fluctuation spectroscopy
8
fluctuations thermal
8
peak denaturation
8
denaturation rich
8
rich regions
8
second peak
8

Similar Publications

Insulated gate bipolar transistors (IGBTs), as an important power semiconductor device, are susceptible to thermal stress, thermal fatigue, and mechanical stresses under high-voltage, high-current, and high-power conditions. Elevated heat dissipation within the module leads to fluctuating rises in temperature that accelerate its own degradation and failure, ultimately causing damage to the module as a whole and posing a threat to operator safety. Through ANSYS Workbench simulation analysis, it is possible to accurately predict the temperature distribution, equivalent stress, and equivalent strain of solder materials under actual working conditions, thus revealing the changing laws of the heat-mechanical interaction in solder materials.

View Article and Find Full Text PDF

A Thermal Cycler Based on Magnetic Induction Heating and Anti-Freezing Water Cooling for Rapid PCR.

Micromachines (Basel)

November 2024

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Distinguished by its exceptional sensitivity and specificity, Polymerase Chain Reaction (PCR) is a pivotal technology for pathogen detection. However, traditional PCR instruments that employ thermoelectric cooling (TEC) are often constrained by cost, efficiency, and performance variability resulting from the fluctuations in ambient temperature. Here, we present a thermal cycler that utilizes electromagnetic induction heating at 50 kHz and anti-freezing water cooling with a velocity of 0.

View Article and Find Full Text PDF

Effects of Temperature and Random Forces in Phase Transformation of Multi-Stable Systems.

Entropy (Basel)

December 2024

Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy.

Multi-stable behavior at the microscopic length-scale is fundamental for phase transformation phenomena observed in many materials. These phenomena can be driven not only by external mechanical forces but are also crucially influenced by disorder and thermal fluctuations. Disorder, arising from structural defects or fluctuations in external stimuli, disrupts the homogeneity of the material and can significantly alter the system's response, often leading to the suppression of cooperativity in the phase transition.

View Article and Find Full Text PDF

Urolithin A Protects Hepatocytes from Palmitic Acid-Induced ER Stress by Regulating Calcium Homeostasis in the MAM.

Biomolecules

November 2024

Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.

An ellagitannin-derived metabolite, Urolithin A (UA), has emerged as a potential therapeutic agent for metabolic disorders due to its antioxidant, anti-inflammatory, and mitochondrial function-improving properties, but its efficacy in protecting against ER stress remains underexplored. The endoplasmic reticulum (ER) is a cellular organelle involved in protein folding, lipid synthesis, and calcium regulation. Perturbations in these functions can lead to ER stress, which contributes to the development and progression of metabolic disorders such as metabolic-associated fatty liver disease (MAFLD).

View Article and Find Full Text PDF

Design and Experiment of a PLC-Based Intelligent Thermal Insulation Box for Nursing Piglets.

Animals (Basel)

December 2024

Chongqing Academy of Animal Sciences, Chongqing 402460, China.

Local heating of the activity area for nursing piglets is crucial for piglet health and the energy efficiency of barn climate control. Traditional heating methods using lamps or covers lack precise control, result in significant energy waste, and cannot be dynamically adjusted according to piglet age or changing environmental temperatures. To address these issues, this study designed a Programmable Logic Controller (PLC)-based thermal insulation box for nursing piglets, utilizing a strip heater instead of the conventional round heating lamp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!