Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Different cells, even those that are genetically identical, can respond differently to identical stimuli, but the precise source of this variability remains obscure. To study this problem, we built a microfluidic experimental system which can track responses of individual cells across multiple stimulations. We used this system to determine that amplitude variation in G-protein-activated calcium release in RAW264.7 macrophages is generally extrinsic, i.e., they arise from long-lived variations between cells and not from stochastic activation of signaling components. In the case of responses linked to P2Y family purine receptors, we estimate that approximately one-third of the observed variability in calcium release is receptor-specific. We further demonstrate that the signaling apparatus downstream of P2Y6 receptor activation is moderately saturable. These observations will be useful in constructing and constraining single-cell models of G protein-coupled calcium dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955501 | PMC |
http://dx.doi.org/10.1016/j.bpj.2010.08.043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!