Background: Epidemiological studies suggest that inhalation of carbonaceous particulate matter from biomass combustion increases susceptibility to bacterial pneumonia. In vitro studies report that phagocytosis of carbon black by alveolar macrophages (AM) impairs killing of Streptococcus pneumoniae. We have previously reported high levels of black carbon in AM from biomass smoke-exposed children and adults. We therefore aimed to use a mouse model to test the hypothesis that high levels of carbon loading of AM in vivo increases susceptibility to pneumococcal pneumonia.

Methods: Female outbred mice were treated with either intranasal phosphate buffered saline (PBS) or ultrafine carbon black (UF-CB in PBS; 500 μg on day 1 and day 4), and then infected with S. pneumoniae strain D39 on day 5. Survival was assessed over 72 h. The effect of UF-CB on AM carbon loading, airway inflammation, and a urinary marker of pulmonary oxidative stress was assessed in uninfected animals.

Results: Instillation of UF-CB in mice resulted a pattern of AM carbon loading similar to that of biomass-smoke exposed humans. In uninfected animals, UF-CB treated animals had increased urinary 8-oxodG (P = 0.055), and an increased airway neutrophil differential count (P < 0.01). All PBS-treated mice died within 72 h after infection with S. pneumoniae, whereas morbidity and mortality after infection was reduced in UF-CB treated animals (median survival 48 h vs. 30 h, P < 0.001). At 24 hr post-infection, UF-CB treated mice had lower lung and the blood S. pneumoniae colony forming unit counts, and lower airway levels of keratinocyte-derived chemokine/growth-related oncogene (KC/GRO), and interferon gamma.

Conclusion: Acute high level loading of AM with ultrafine carbon black particles per se does not increase the susceptibility of mice to pneumococcal infection in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976728PMC
http://dx.doi.org/10.1186/1743-8977-7-30DOI Listing

Publication Analysis

Top Keywords

carbon black
16
ultrafine carbon
12
carbon loading
12
uf-cb treated
12
carbon
8
susceptibility pneumococcal
8
increases susceptibility
8
high levels
8
treated animals
8
mice
6

Similar Publications

The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was studied. The results of the scanning electron microscopy, dynamic light scattering, zeta potential measurements, and laser diffraction analysis suggested a similarity in the morphology of the NDS particle aggregates and agglomerates.

View Article and Find Full Text PDF

Tree bark is an important natural polymer for sound absorption. The main components in the bark of different tree species are polymers with high molecular weight such as cellulose, hemicellulose, and lignin. The aim of this study is to determine the noise reduction coefficient (NRC), lignin, alcohol-benzene solubility (ABS), carbon (C), and nitrogen (N) contents in samples taken from the bark of different tree species-black locust (Robinia pseudoacacia), narrow-leaved ash (Fraxinus angustifolia), stone pine (Pinus pinea), silver lime (Tilia tomentosa), sweet chestnut (Castanea sativa), sessile oak (Quercus petraea), and maritime pine (Pinus pinaster) and to investigate the relationship between these chemical properties and sound absorption measurements.

View Article and Find Full Text PDF

Increasing pesticide diversity impairs soil microbial functions.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Pesticide application is essential for stabilizing agricultural production. However, the effects of increasing pesticide diversity on soil microbial functions remain unclear, particularly under varying nitrogen (N) fertilizer management practices. In this study, we investigated the stochasticity of soil microbes and multitrophic networks through amplicon sequencing, assessed soil community functions related to carbon (C), N, phosphorus (P), and sulfur (S) cycling, and characterized the dominant bacterial life history strategies via metagenomics along a gradient of increasing pesticide diversity under two N addition levels.

View Article and Find Full Text PDF

Background: nowadays, the photoacoustic imaging is in the mainstream of cancer theranostics. In this study the nanoparticles with previously proven photoacoustic imaging properties, i.e.

View Article and Find Full Text PDF

The use of 3D-printed electrodes is reported fabricated from in-house conductive filament composed of a mixture of recycled poly (lactic acid) (rPLA), graphite (Gpt), and carbon black (CB) for fast detection of the abused drug ketamine. Firstly, the performance of these electrodes was evaluated in comparison to 3D-printed electrodes produced employing a commercially available conductive filament. After a simple pretreatment step (mechanical polishing), the new 3D-printed electrodes presented better performance than the electrodes produced from commercial filament in relation to peak-to-peak separation of the redox probe [Fe(CN)]/ (130 mV and 759 mV, respectively), charge transfer resistance (R = 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!