A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evolving cardiac conduction phenotypes in developing zebrafish larvae: implications to drug sensitivity. | LitMetric

Cardiac arrhythmias include problems with impulse formation and/or conduction abnormalities. Zebrafish (Danio rerio) is an emerging model system for studying the cardiac conduction system. However, real-time recording of the electrocardiogram remains a challenge. In the present study, we assessed the feasibility of recording electrical cardiogram (ECG) signals from the zebrafish larvae using the micropipette electrodes, and demonstrated the dynamic changes in ECG signals and their sensitivity to Amiodarone during the developmental stages. We observed that ECG signals revealed P waves and QRS complexes at 7 days postfertilization (dpf). T waves started to develop at 14 dpf. Distinct P waves, QRS complexes, and T waves were similar to those of adult zebrafish at 35 dpf, accompanied by a statistically significant decrease in QRS intervals (from 256 ± 16 ms at 7 dpf to 54 ± 6 ms, p < 0.01, n = 5). In response to Amiodarone, ECG signals showed QRS prolongation from 7 to 35 dpf (p < 0.05, n = 5). Hence, micropipette electrodes can be applied to detect evolving ECG signals from the developing zebrafish larvae, thus providing a noninvasive and nonparalyzing approach to investigate cardiac conduction phenotypes in response to genetic, epigenetic, or pharmacologic perturbation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005146PMC
http://dx.doi.org/10.1089/zeb.2010.0658DOI Listing

Publication Analysis

Top Keywords

ecg signals
20
cardiac conduction
12
zebrafish larvae
12
conduction phenotypes
8
developing zebrafish
8
micropipette electrodes
8
waves qrs
8
qrs complexes
8
zebrafish
5
ecg
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!